论文标题

从液体电解质中的局部结构中推断全球动力学

Inferring global dynamics from local structure in liquid electrolytes

论文作者

Jones, Penelope K., Fong, Kara D., Persson, Kristin A., Lee, Alpha A.

论文摘要

浓缩电解质中的离子传输在电化学系统(例如锂离子电池)中起着基本作用。但是,强烈的离子离子相互作用仍然神秘地运输机制。一个关键的问题是,是否仅局部静态结构就可以预测离子传输的动力学,如果是这样,则决定传输的关键结构基序是什么?在本文中,我们表明机器学习可以成功地将全球电导率分解为局部,瞬时离子贡献的时空平均值,并将``局部摩尔电导率''领域与当地离子环境联系起来。我们的机器学习模型准确地预测了通过训练集的一部分,该模型可以预测该训练集的一部分,该训练集可以进行分析,这是IIN的一部分。机器学习的局部电导率领域,我们观察到,高浓度的局部电导率波动与总摩尔电导率有负相关,这些波动是由于低电导率离子的长时间分布而不是不同的离子对,而不是在空间上通过更广泛的互动来实现了我们的相互作用。将全球集体属性归因于本地原子贡献。

Ion transport in concentrated electrolytes plays a fundamental role in electrochemical systems such as lithium ion batteries. Nonetheless, the mechanism of transport amid strong ion-ion interactions remains enigmatic. A key question is whether the dynamics of ion transport can be predicted by the local static structure alone, and if so what are the key structural motifs that determine transport. In this paper, we show that machine learning can successfully decompose global conductivity into the spatio-temporal average of local, instantaneous ionic contributions, and relate this ``local molar conductivity" field to the local ionic environment. Our machine learning model accurately predicts the molar conductivity of electrolyte systems that were not part of the training set, suggesting that the dynamics of ion transport is predictable from local static structure. Further, through analysing this machine-learned local conductivity field, we observe that fluctuations in local conductivity at high concentration are negatively correlated with total molar conductivity. Surprisingly, these fluctuations arise due to a long tail distribution of low conductivity ions, rather than distinct ion pairs, and are spatially correlated through both like- and unlike-charge interactions. More broadly, our approach shows how machine learning can aid the understanding of complex soft matter systems, by learning a function that attributes global collective properties to local, atomistic contributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源