论文标题

通过机器学习发现Gellmann-Okubo公式

Discover the GellMann-Okubo formula with machine learning

论文作者

Zhang, Zhenyu, Ma, Rui, Hu, Jifeng, Wang, Qian

论文摘要

机器学习是一种新颖而强大的技术,已在各种科学主题中广泛使用。我们演示了一种基于机器学习的方法,该方法由一组受物理学启发的通用指标和规则。利用符号回归技术,我们成功地重新发现了Gellmann Okubo公式。这种方法可以有效地找到用户定义的可观察到的明确解决方案,并很容易扩展到外来的强子光谱。

Machine learning is a novel and powerful technology and has been widely used in various science topics. We demonstrate a machine-learning based approach built by a set of general metrics and rules inspired by physics. Taking advantages of physical constraints, such as dimension identity, symmetry and generalization, we succeed to rediscover the GellMann Okubo formula using a technique of symbolic regression. This approach can effectively find explicit solutions among user-defined observable, and easily extend to study on exotic hadron spectrum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源