论文标题

BoxShrink:从边界框到分割面具

BoxShrink: From Bounding Boxes to Segmentation Masks

论文作者

Gröger, Michael, Borisov, Vadim, Kasneci, Gjergji

论文摘要

医学图像计算社区面临的核心挑战之一是快速有效的数据样本标签。由于昂贵,耗时,并且需要复杂的工具,因此获得细分标签以进行细分尤其要求。相反,应用边界盒的快速速度比细粒度的标签要少得多,但不会产生详细的结果。作为回应,我们为弱监督任务提出了一个新颖的框架,将边界盒快速转换为分割面具,而无需训练任何机器学习模型,即创建的BoxShrink。所提出的框架有两个变体 - 快速盒用于快速标签转换的框架,以及可靠的boxshrink,用于更精确的标签转换。与仅使用边界盒注释作为结肠镜检查图像数据集的输入相比,在使用BoxShrink进行训练时,在几种模型中平均提高了4%的IOU。我们为拟议的框架开了代码,并在线发布了代码。

One of the core challenges facing the medical image computing community is fast and efficient data sample labeling. Obtaining fine-grained labels for segmentation is particularly demanding since it is expensive, time-consuming, and requires sophisticated tools. On the contrary, applying bounding boxes is fast and takes significantly less time than fine-grained labeling, but does not produce detailed results. In response, we propose a novel framework for weakly-supervised tasks with the rapid and robust transformation of bounding boxes into segmentation masks without training any machine learning model, coined BoxShrink. The proposed framework comes in two variants - rapid-BoxShrink for fast label transformations, and robust-BoxShrink for more precise label transformations. An average of four percent improvement in IoU is found across several models when being trained using BoxShrink in a weakly-supervised setting, compared to using only bounding box annotations as inputs on a colonoscopy image data set. We open-sourced the code for the proposed framework and published it online.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源