论文标题
分析磁盘缸相互作用的潜在定律,用于粘合,可变形(NANO)纤维的计算建模
Analytical disk-cylinder interaction potential laws for the computational modeling of adhesive, deformable (nano)fibers
论文作者
论文摘要
对许多技术或生物系统具有很高的实际相关性的微纤维系统或材料的复杂纤维系统或材料的分析,需要对作用在纤维表面上的粘合剂和排斥力进行准确的分析描述。尽管对于理论研究和基于计算机的模拟,通常都需要这种分析表达式,但后者激发了我们在这里得出磁盘 - 缸相互作用的潜在定律,这些定律在小型表面分离的决定性方向上有效。所选的基本点对相互作用类型遵循简单的Lennard-Jones模型,具有逆权范围,用于粘合剂范德华的部分和空间,排斥的部分。我们提出了三种不同的解决方案,从最高准确性到表达式简单性和足够准确性之间的最佳权衡。使用数值和分析参考解决方案在特定相互作用情况下,对简化近似值和衍生潜在定律的准确性的有效性进行了彻底分析。最重要的是,在小分离的决定性方案中,正确的渐近缩放行为得到了正确的预测$(1 \!/\!/\!\ sin \!α)$ - 角度依赖性(对于非平行的圆柱体),由拟议的分析解决方案获得。正如我们在当前研究的前景中所显示的那样,可以使用衍生的分析磁盘相互作用潜在定律来制定高效的计算模型,以使任意弯曲的纤维相互作用,从而使磁盘代表第一纤维形状的第一和圆柱体的局部近似值。
The analysis of complex fibrous systems or materials on the micro- and nanoscale, which have a high practical relevance for many technical or biological systems, requires accurate analytical descriptions of the adhesive and repulsive forces acting on the fiber surfaces. While such analytical expressions are generally needed both for theoretical studies and for computer-based simulations, the latter motivates us here to derive disk-cylinder interaction potential laws that are valid for arbitrary mutual orientations in the decisive regime of small surface separations. The chosen type of fundamental point-pair interaction follows the simple Lennard-Jones model with inverse power laws for both the adhesive van der Waals part and the steric, repulsive part. We present three different solutions, ranging from highest accuracy to the best trade-off between simplicity of the expression and sufficient accuracy for our intended use. The validity of simplifying approximations and the accuracy of the derived potential laws is thoroughly analyzed, using both numerical and analytical reference solutions for specific interaction cases. Most importantly, the correct asymptotic scaling behavior in the decisive regime of small separations is achieved, and also the theoretically predicted $(1\!/\!\sin\!α)$-angle dependence (for non-parallel cylinders) is obtained by the proposed analytical solutions. As we show in the outlook to our current research, the derived analytical disk-cylinder interaction potential laws may be used to formulate highly efficient computational models for the interaction of arbitrarily curved fibers, such that the disk represents the cross-section of the first and the cylinder a local approximation to the shape of the second fiber.