论文标题

在Diophantine方程式上$ u_n-b^m = c $

On the Diophantine equation $U_n-b^m = c$

论文作者

Heintze, Sebastian, Tichy, Robert F., Vukusic, Ingrid, Ziegler, Volker

论文摘要

令$(u_n)_ {n \ in \ mathbb {n}} $为在整数上定义的固定线性复发序列(具有一些技术限制)。我们证明存在有效计算常数$ b $和$ n_0 $,因此,对于任何$ b,c \ in \ mathbb {z} $,带有$ b> b $带有方程$ u_n -b^m = c $在\ mathbb {n} n}^2 $ n_ $ n_ $ n_ $ n_ $ n_ $ n_ $ n_ $ n_ $ n_ $ n_ $ n_ $和$ n_的最多两个不同的解决方案$(n,m)\ que q $ n_此外,我们将结果应用于由$ t_1 = t_1 = 1 $,$ t_3 = 2 $和$ t_ {n} = t_ {n-1}+t_ {n-2}+t_ {n-3} $ for $ n \ geq 4 $。通过LLL-Algorithm和持续的分数减少,我们能够证明$ n_0 = 1.1 \ cdot 10^{37} $和$ b = e^{438} $。相应的还原算法在SAGE中实现。

Let $(U_n)_{n\in \mathbb{N}}$ be a fixed linear recurrence sequence defined over the integers (with some technical restrictions). We prove that there exist effectively computable constants $B$ and $N_0$ such that for any $b,c\in \mathbb{Z}$ with $b> B$ the equation $U_n - b^m = c$ has at most two distinct solutions $(n,m)\in \mathbb{N}^2$ with $n\geq N_0$ and $m\geq 1$. Moreover, we apply our result to the special case of Tribonacci numbers given by $T_1= T_2=1$, $T_3=2$ and $T_{n}=T_{n-1}+T_{n-2}+T_{n-3}$ for $n\geq 4$. By means of the LLL-algorithm and continued fraction reduction we are able to prove $N_0=1.1\cdot 10^{37}$ and $B=e^{438}$. The corresponding reduction algorithm is implemented in Sage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源