论文标题
通过对抗性学习和交通预测中的联合时空嵌入来增强鲁棒性
Enhancing the Robustness via Adversarial Learning and Joint Spatial-Temporal Embeddings in Traffic Forecasting
论文作者
论文摘要
交通预测是城市规划和计算中的基本问题。流量对象之间复杂的动态空间依赖性(例如,传感器和路段)一直在要求高度灵活的模型。不幸的是,复杂的模型可能会遇到较差的鲁棒性,尤其是在捕获时间序列的趋势(一阶导数随时间)时,导致了不现实的预测。为了应对平衡动态和鲁棒性的挑战,我们提出了TrendGCN,这是一种新方案,该方案扩展了GCN的灵活性以及具有固有统计相关性的处理顺序数据的生成和对抗性损失的分配能力。一方面,我们的模型同时结合了空间(节点)的嵌入和时间(时间的)嵌入,以解释异质的空间和时间卷积;另一方面,它使用GAN结构来系统地评估实际和预测时间序列之间的统计一致性,从时间趋势和复杂的时空依赖性角度来看。与独立处理逐步预测错误的传统方法相比,我们的方法可以产生更现实和强大的预测。六个基准流量预测数据集和理论分析的实验都证明了TrendGCN的优越性和最先进的性能。源代码可从https://github.com/juyongjiang/trendgcn获得。
Traffic forecasting is an essential problem in urban planning and computing. The complex dynamic spatial-temporal dependencies among traffic objects (e.g., sensors and road segments) have been calling for highly flexible models; unfortunately, sophisticated models may suffer from poor robustness especially in capturing the trend of the time series (1st-order derivatives with time), leading to unrealistic forecasts. To address the challenge of balancing dynamics and robustness, we propose TrendGCN, a new scheme that extends the flexibility of GCNs and the distribution-preserving capacity of generative and adversarial loss for handling sequential data with inherent statistical correlations. On the one hand, our model simultaneously incorporates spatial (node-wise) embeddings and temporal (time-wise) embeddings to account for heterogeneous space-and-time convolutions; on the other hand, it uses GAN structure to systematically evaluate statistical consistencies between the real and the predicted time series in terms of both the temporal trending and the complex spatial-temporal dependencies. Compared with traditional approaches that handle step-wise predictive errors independently, our approach can produce more realistic and robust forecasts. Experiments on six benchmark traffic forecasting datasets and theoretical analysis both demonstrate the superiority and the state-of-the-art performance of TrendGCN. Source code is available at https://github.com/juyongjiang/TrendGCN.