论文标题
探索分辨率和退化线索作为低质量对象检测的自我监督信号
Exploring Resolution and Degradation Clues as Self-supervised Signal for Low Quality Object Detection
论文作者
论文摘要
图像恢复算法(例如超级分辨率(SR))是低质量图像中对象检测的必不可少的预处理模块。这些算法中的大多数都认为降解是固定的,并且已知先验。但是,实际上,实际降解或最佳的上采样率是未知或与假设不同的,导致预处理模块的性能不断恶化,以及随之而来的高级任务(例如对象检测)。在这里,我们提出了一个新颖的自我监督框架,以检测降解的低分辨率图像中的对象。我们利用下采样降解作为一种自我监督信号的一种转换,以探索针对各种决议和其他退化条件的模棱两可的表示。自我划分(AERIS)框架中的自动编码分辨率可以进一步利用高级SR体系结构,并具有任意分辨率恢复解码器,以从退化的输入图像中重建原始对应关系。表示学习和对象检测均以端到端的培训方式共同优化。通用AERIS框架可以在具有不同骨架的各种主流对象检测架构上实现。广泛的实验表明,与现有方法相比,我们的方法在面对变化降解情况时取得了卓越的性能。代码将在https://github.com/cuiziteng/eccv_aeris上发布。
Image restoration algorithms such as super resolution (SR) are indispensable pre-processing modules for object detection in low quality images. Most of these algorithms assume the degradation is fixed and known a priori. However, in practical, either the real degradation or optimal up-sampling ratio rate is unknown or differs from assumption, leading to a deteriorating performance for both the pre-processing module and the consequent high-level task such as object detection. Here, we propose a novel self-supervised framework to detect objects in degraded low resolution images. We utilizes the downsampling degradation as a kind of transformation for self-supervised signals to explore the equivariant representation against various resolutions and other degradation conditions. The Auto Encoding Resolution in Self-supervision (AERIS) framework could further take the advantage of advanced SR architectures with an arbitrary resolution restoring decoder to reconstruct the original correspondence from the degraded input image. Both the representation learning and object detection are optimized jointly in an end-to-end training fashion. The generic AERIS framework could be implemented on various mainstream object detection architectures with different backbones. The extensive experiments show that our methods has achieved superior performance compared with existing methods when facing variant degradation situations. Code would be released at https://github.com/cuiziteng/ECCV_AERIS.