论文标题
线段几何计算的正弦灵敏度计算
Sinusoidal Sensitivity Calculation for Line Segment Geometries
论文作者
论文摘要
目的:为Kern等人提出的正弦线圈灵敏度模型提供封闭形式的解决方案。解决方案允许对可以直接应用于原始强度数据集的各种模拟偏置字段进行精确计算。 方法:傅立叶分布理论和标准集成技术用于计算从线段源产生的测量磁场的傅立叶变换。 结果:a $ l^1 _ {\ rm loc}(\ mathbb {r}^3)$函数在任意线段的几何形状中以完整的通用性得出。讨论了采样标准和与原始正弦模型的等效性。最后,为按需灵敏度和偏见生成提供了CUDA加速实现$ \ texttt {biasgen} $。 结论:鉴于模拟过程的建模灵活性,从业人员现在将可以访问模拟数据集的更多样化的生态系统,这些生态系统可用于定量比较前瞻性偏差方法。
Purpose: Provide a closed-form solution to the sinusoidal coil sensitivity model proposed by Kern et al. Solution allows for the precise computations of varied, simulated bias fields which can be directly applied onto raw intensity datasets. Methods: Fourier distribution theory and standard integration techniques were used to calculate the Fourier transform of measured magnetic field produced from line segment sources. Results: A $L^1_{\rm loc}(\mathbb{R}^3)$ function is derived in full generality for arbitrary line segment geometries. Sampling criteria and equivalence to the original sinusoidal model are discussed. Lastly a CUDA accelerated implementation $\texttt{biasgen}$ is provided for on-demand sensitivity and bias generation. Conclusion: Given the modeling flexibility of the simulated procedure, practitioners will now have access to a more diverse ecosystem of simulated datasets which may be used to quantitatively compare prospective debiasing methods.