论文标题

全球指针:命名实体识别的新型有效跨度方法

Global Pointer: Novel Efficient Span-based Approach for Named Entity Recognition

论文作者

Su, Jianlin, Murtadha, Ahmed, Pan, Shengfeng, Hou, Jing, Sun, Jun, Huang, Wanwei, Wen, Bo, Liu, Yunfeng

论文摘要

指定的实体识别(NER)任务旨在从属于人,位置,组织等的预定语义类型的文本中识别实体。平面实体的最先进解决方案通常因捕获基础文本中的细颗粒语义信息而受苦。现有的基于跨度的方法克服了这一限制,但是计算时间仍然是一个问题。在这项工作中,我们提出了一个基于跨度的NER框架,即全球指针(GP),该框架通过乘法性注意机制来利用相对位置。最终目标是启用一个全球观点,以考虑开始和最终位置以预测实体。为此,我们设计了两个模块来识别给定实体的头部和尾部,以使训练和推理过程之间的不一致。此外,我们引入了一种新型的分类损失函数,以解决不平衡标签问题。在参数方面,我们引入了一种简单但有效的近似方法来减少训练参数。我们在各种基准数据集上广泛评估GP。我们的广泛实验表明,GP可以胜过现有的解决方案。此外,实验结果表明,与软马克斯和熵替代方案相比,引入的损失函数的功效。

Named entity recognition (NER) task aims at identifying entities from a piece of text that belong to predefined semantic types such as person, location, organization, etc. The state-of-the-art solutions for flat entities NER commonly suffer from capturing the fine-grained semantic information in underlying texts. The existing span-based approaches overcome this limitation, but the computation time is still a concern. In this work, we propose a novel span-based NER framework, namely Global Pointer (GP), that leverages the relative positions through a multiplicative attention mechanism. The ultimate goal is to enable a global view that considers the beginning and the end positions to predict the entity. To this end, we design two modules to identify the head and the tail of a given entity to enable the inconsistency between the training and inference processes. Moreover, we introduce a novel classification loss function to address the imbalance label problem. In terms of parameters, we introduce a simple but effective approximate method to reduce the training parameters. We extensively evaluate GP on various benchmark datasets. Our extensive experiments demonstrate that GP can outperform the existing solution. Moreover, the experimental results show the efficacy of the introduced loss function compared to softmax and entropy alternatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源