论文标题

利用分布偏置在不确定性下避免反应性碰撞:一种内核嵌入方法

Leveraging Distributional Bias for Reactive Collision Avoidance under Uncertainty: A Kernel Embedding Approach

论文作者

Gupta, Anish, Singh, Arun Kumar, Krishna, K. Madhava

论文摘要

许多测量机器人和动态障碍状态的商品传感器具有非高斯噪声特征。然而,许多当前的方法将运动和感知中的基本不确定性视为高斯,主要是为了确保计算障碍。另一方面,与非高斯不确定性一起工作的现有计划者不会阐明利用运动和感知噪声的分布特征,例如偏见以避免有效碰撞。 本文通过将避免反应碰撞作为碰撞约束违规与Dirac Delta分布之间的分配匹配问题来填补这一空白。为了确保策划者的快速反应性,我们将每个分布嵌入重现Hilbert空间,并重新将分布匹配重新匹配,以最大程度地减少两个分布之间的最大平均差异(MMD)。我们表明,评估给定对照输入的MMD归结为仅矩阵矩阵产品。我们利用这种见解来开发一种简单的控制抽样方法,以避免动态和不确定的障碍。 我们在两个方面推进了最新的。首先,我们进行了广泛的实证研究,以表明我们的计划者可以从样本级别的信息中推断出分布偏差。因此,它使用此见解来指导机器人良好的同型。我们还强调了基本不确定性的高斯近似如何失去偏置估计值,并引导机器人以高碰撞概率为不利状态。其次,我们显示出与以前的非参数和高斯近似反应性碰撞避免碰撞的碰撞方法的拟议分布匹配方法的切实比较优势。

Many commodity sensors that measure the robot and dynamic obstacle's state have non-Gaussian noise characteristics. Yet, many current approaches treat the underlying-uncertainty in motion and perception as Gaussian, primarily to ensure computational tractability. On the other hand, existing planners working with non-Gaussian uncertainty do not shed light on leveraging distributional characteristics of motion and perception noise, such as bias for efficient collision avoidance. This paper fills this gap by interpreting reactive collision avoidance as a distribution matching problem between the collision constraint violations and Dirac Delta distribution. To ensure fast reactivity in the planner, we embed each distribution in Reproducing Kernel Hilbert Space and reformulate the distribution matching as minimizing the Maximum Mean Discrepancy (MMD) between the two distributions. We show that evaluating the MMD for a given control input boils down to just matrix-matrix products. We leverage this insight to develop a simple control sampling approach for reactive collision avoidance with dynamic and uncertain obstacles. We advance the state-of-the-art in two respects. First, we conduct an extensive empirical study to show that our planner can infer distributional bias from sample-level information. Consequently, it uses this insight to guide the robot to good homotopy. We also highlight how a Gaussian approximation of the underlying uncertainty can lose the bias estimate and guide the robot to unfavorable states with a high collision probability. Second, we show tangible comparative advantages of the proposed distribution matching approach for collision avoidance with previous non-parametric and Gaussian approximated methods of reactive collision avoidance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源