论文标题

反向数学的大:实数的不可实数

Big in Reverse Mathematics: the uncountability of the real numbers

论文作者

Sanders, Sam

论文摘要

$ \ mathbb {r} $的不可数量是其最基本的属性之一,在数学之外已知。 Cantor的1874年证明了$ \ Mathbb {R} $的不可估量性,甚至出现在有关集合理论的第一篇论文中,即历史里程碑。在本文中,我们研究了Kohlenbach的高阶反向数学(简称RM)的$ \ Mathbb {r} $的不可数量,以以下原则的幌子:$ \ hbox {用于可数的setable set $ a \ subset \ subset \ mathbb {r} $ y \ y \ y \ y \ y \ y \ y \ y \ in \ in \ in \ in \ in \ in \ in \ in \ in一个$。} $$一个重要的概念观察是,基于对$ \ Mathbb {n} $的注射或两种注射或两种物种的定义 - 似乎不适合主流数学的RM研究;我们还提出了一个合适的(在强系统上等效)的替代定义,即有限集的$ \ mathbb {n} $上的联合;后者是从文献中知道的,并且更接近可计数集的“野外”。我们根据我们的替代定义确定了相当数量的定理,这些定理等效于中心定理。也许令人惊讶的是,我们的等效定理涉及Riemann积分,调节或有限变化功能,Blumberg定理和Volterra的早期工作的最基本属性。我们的等值也很强,也很强大,可以促进$ \ althbb {r} $ to of Satess''大型'rm'Mathbb {r} $的不可设立。

The uncountability of $\mathbb{R}$ is one of its most basic properties, known far outside of mathematics. Cantor's 1874 proof of the uncountability of $\mathbb{R}$ even appears in the very first paper on set theory, i.e. a historical milestone. In this paper, we study the uncountability of $\mathbb{R}$ in Kohlenbach's higher-order Reverse Mathematics (RM for short), in the guise of the following principle: $$\hbox{for a countable set $A\subset \mathbb{R}$, there exists $y\in \mathbb{R}\setminus A$.}$$ An important conceptual observation is that the usual definition of countable set -- based on injections or bijections to $\mathbb{N}$ -- does not seem suitable for the RM-study of mainstream mathematics; we also propose a suitable (equivalent over strong systems) alternative definition of countable set, namely union over $\mathbb{N}$ of finite sets; the latter is known from the literature and closer to how countable sets occur 'in the wild'. We identify a considerable number of theorems that are equivalent to the centred theorem based on our alternative definition. Perhaps surprisingly, our equivalent theorems involve most basic properties of the Riemann integral, regulated or bounded variation functions, Blumberg's theorem, and Volterra's early work circa 1881. Our equivalences are also robust, promoting the uncountability of $\mathbb{R}$ to the status of 'big' system in RM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源