论文标题
电子掺杂的crsite $ _ {3} $单层:第一原则预测
Field-controlled quantum anomalous Hall effect in electron-doped CrSiTe$_{ 3 }$ monolayer: a first-principles prediction
论文作者
论文摘要
我们报告了Chern绝缘阶段从单层的硫化硫化硫化硫化果实Crsite $ _ {3} $,一种过渡金属Trichacogenides(TMTC)材料中,在电荷掺杂的情况下。由于与TE $ p $轨道的强大杂交,自旋轨道耦合效果打开了有限的频带间隙,从而导致Cr $ e _ {\ Mathrm {g}} $传统带有更高CHERN数字的非平地拓扑。我们的计算表明,可以通过在Cr $ _ {2} $ _ {2} $ si $ _ {2} $ te $ _ {6} $中添加一个电子单元中的一个电子来实现量子异常的效果。此外,掺杂引起的异常霍尔电导率可以通过自旋轨道耦合的自旋定向依赖性调谐来控制外部磁场。此外,我们发现采用紧密结合模型分析的独特量子异常霍尔阶段,这表明Crsite $ _ {3} $可能是一个令人着迷的新平台,可以实现Chern绝缘系统具有较高的Chern数字。
We report Chern insulating phases emerging from a single layer of layered chalcogenide CrSiTe$_{3}$, a transition metal trichacogenides (TMTC) material, in the presence of charge doping. Due to strong hybridization with Te $p$ orbitals, the spin-orbit coupling effect opens a finite band gap, leading to a nontrivial topology of the Cr $e_{\mathrm{g}}$ conduction band manifold with higher Chern numbers. Our calculations show that quantum anomalous Hall effects can be realized by adding one electron in a formula unit cell of Cr$_{2}$Si$_{2}$Te$_{6}$, equivalent to electron doping by 2.36$\times$10$^{14}$ cm$^{-2}$ carrier density. Furthermore, the doping-induced anomalous Hall conductivity can be controlled by an external magnetic field via spin-orientation-dependent tuning of the spin-orbit coupling. In addition, we find distinct quantum anomalous Hall phases employing tight-binding model analysis, suggesting that CrSiTe$_{3}$ can be a fascinating new platform to realize Chern insulating systems with higher Chern numbers.