论文标题

Croloss:在推荐系统中迈出可定制的检索模型的损失

CROLoss: Towards a Customizable Loss for Retrieval Models in Recommender Systems

论文作者

Tang, Yongxiang, Bai, Wentao, Li, Guilin, Liu, Xialong, Zhang, Yu

论文摘要

在大规模推荐系统中,准确地检索最重要的候选者在资源限制中至关重要。为了评估此类检索模型的性能,召回@n,在顶部N排名中取回的正样品的频率已被广泛使用。但是,用于检索模型(例如SoftMax跨凝结和成对比较方法)的大多数常规损失函数不会直接优化Recell@n。此外,这些常规损失函数不能针对每个应用程序所需的特定检索大小N定制,因此可能会导致次优性能。在本文中,我们提出了可自定义的召回@n优化损失(Croloss),该损失功能可以直接优化@n指标的召回函数,并且可以根据N的不同选择进行自定义。该拟议的Croloss配方定义了更广泛的损失功能空间,涵盖了大多数常规损失功能,以涵盖特殊情况。此外,我们开发了lambda方法,这是一种基于梯度的方法,它邀请了更灵活的灵活性,并可以进一步提高系统性能。我们在两个公共基准数据集上评估了拟议的Croloss。结果表明,Croloss在两个数据集的常规损失功能上取得了SOTA的结果,这些数据集的各种检索大小N. Croloss已将其部署到我们的在线电子商务广告平台上,在线电子商务广告平台上,Croloss的14天在线A/B测试表明,Croloss贡献了4.75%的大量商业收入增长。

In large-scale recommender systems, retrieving top N relevant candidates accurately with resource constrain is crucial. To evaluate the performance of such retrieval models, Recall@N, the frequency of positive samples being retrieved in the top N ranking, is widely used. However, most of the conventional loss functions for retrieval models such as softmax cross-entropy and pairwise comparison methods do not directly optimize Recall@N. Moreover, those conventional loss functions cannot be customized for the specific retrieval size N required by each application and thus may lead to sub-optimal performance. In this paper, we proposed the Customizable Recall@N Optimization Loss (CROLoss), a loss function that can directly optimize the Recall@N metrics and is customizable for different choices of N. This proposed CROLoss formulation defines a more generalized loss function space, covering most of the conventional loss functions as special cases. Furthermore, we develop the Lambda method, a gradient-based method that invites more flexibility and can further boost the system performance. We evaluate the proposed CROLoss on two public benchmark datasets. The results show that CROLoss achieves SOTA results over conventional loss functions for both datasets with various choices of retrieval size N. CROLoss has been deployed onto our online E-commerce advertising platform, where a fourteen-day online A/B test demonstrated that CROLoss contributes to a significant business revenue growth of 4.75%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源