论文标题
拿铁:语言轨迹变压器
LATTE: LAnguage Trajectory TransformEr
论文作者
论文摘要
自然语言是表达人类意图的最直观的方式之一。但是,在现实世界中将指示和命令转换为机器人运动产生和部署并不是一件容易的事。传统上,使用特定于任务的解决方案来解决,将机器人固有的低水平几何和运动动力学约束与人的高级语义指令结合在一起的挑战通常是在硬件平台之间几乎没有通用性的解决方案,通常在使用静态目标动作和命令的情况下使用。相反,这项工作提出了一个灵活的基于语言的框架,该框架允许用户修改通用机器人轨迹。我们的方法利用预先训练的语言模型(BERT和CLIP)直接从自由形式的文本输入和场景图像中对用户的意图进行编码,并将目标对象直接从变压器编码网络生成的几何特征,最后使用变压器解码器输出轨迹,而无需与任务或机器人信息相关。我们大大扩展了自己先前在Bucker等人中提出的工作。通过将轨迹参数化空间扩展到3D和速度,而不是仅XY运动。此外,我们现在训练该模型,以使用场景中对象的实际图像进行上下文(而不是文本描述),并且我们以超出操纵的各种场景(例如空中和腿部机器人)来评估系统。我们模拟的现实生活实验表明,我们的变压器模型可以成功遵循人类意图,从而改变了多个环境中轨迹的形状和速度。代码库可用:https://github.com/arthurfenderbucker/latte-langue-trajectory-transformer.git
Natural language is one of the most intuitive ways to express human intent. However, translating instructions and commands towards robotic motion generation and deployment in the real world is far from being an easy task. The challenge of combining a robot's inherent low-level geometric and kinodynamic constraints with a human's high-level semantic instructions traditionally is solved using task-specific solutions with little generalizability between hardware platforms, often with the use of static sets of target actions and commands. This work instead proposes a flexible language-based framework that allows a user to modify generic robotic trajectories. Our method leverages pre-trained language models (BERT and CLIP) to encode the user's intent and target objects directly from a free-form text input and scene images, fuses geometrical features generated by a transformer encoder network, and finally outputs trajectories using a transformer decoder, without the need of priors related to the task or robot information. We significantly extend our own previous work presented in Bucker et al. by expanding the trajectory parametrization space to 3D and velocity as opposed to just XY movements. In addition, we now train the model to use actual images of the objects in the scene for context (as opposed to textual descriptions), and we evaluate the system in a diverse set of scenarios beyond manipulation, such as aerial and legged robots. Our simulated and real-life experiments demonstrate that our transformer model can successfully follow human intent, modifying the shape and speed of trajectories within multiple environments. Codebase available at: https://github.com/arthurfenderbucker/LaTTe-Language-Trajectory-TransformEr.git