论文标题

基于语义数据增强的范围距离学习

Semantic Data Augmentation based Distance Metric Learning for Domain Generalization

论文作者

Wang, Mengzhu, Yuan, Jianlong, Qian, Qi, Wang, Zhibin, Li, Hao

论文摘要

域的概括(DG)旨在在一个或多个不同但相关的源域上学习一个模型,这些模型可以推广到看不见的目标域。现有的DG方法试图促使模型的概括能力的源域多样性,同时可能必须引入辅助网络或引起计算成本。相反,这项工作应用了特征空间中的隐式语义增强来捕获源域的多样性。具体来说,包括距离度量学习(DML)的附加损失函数,以优化数据分布的局部几何形状。此外,采用跨熵损失带来的徽标,并采用了无限的增强作用,作为DML损失的输入特征,代替了深层特征。我们还提供了理论分析,以表明逻辑可以很好地近似于原始特征上定义的距离。此外,我们对方法背后的机制和理性提供了深入的分析,这使我们可以更好地了解为什么要代替特征的杠杆逻辑可以帮助域的概括。拟议的DML损失与隐式增强量纳入了最近的DG方法,即傅立叶增强联合教师框架(FACT)。同时,我们的方法也可以轻松地插入各种DG方法中。在三个基准测试(Digits-DG,PAC和Office Home)上进行了广泛的实验表明,该建议的方法能够实现最新的性能。

Domain generalization (DG) aims to learn a model on one or more different but related source domains that could be generalized into an unseen target domain. Existing DG methods try to prompt the diversity of source domains for the model's generalization ability, while they may have to introduce auxiliary networks or striking computational costs. On the contrary, this work applies the implicit semantic augmentation in feature space to capture the diversity of source domains. Concretely, an additional loss function of distance metric learning (DML) is included to optimize the local geometry of data distribution. Besides, the logits from cross entropy loss with infinite augmentations is adopted as input features for the DML loss in lieu of the deep features. We also provide a theoretical analysis to show that the logits can approximate the distances defined on original features well. Further, we provide an in-depth analysis of the mechanism and rational behind our approach, which gives us a better understanding of why leverage logits in lieu of features can help domain generalization. The proposed DML loss with the implicit augmentation is incorporated into a recent DG method, that is, Fourier Augmented Co-Teacher framework (FACT). Meanwhile, our method also can be easily plugged into various DG methods. Extensive experiments on three benchmarks (Digits-DG, PACS and Office-Home) have demonstrated that the proposed method is able to achieve the state-of-the-art performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源