论文标题

人工神经网络产生的模块化语法演化

Modular Grammatical Evolution for the Generation of Artificial Neural Networks

论文作者

Soltanian, Khabat, Ebnenasir, Ali, Afsharchi, Mohsen

论文摘要

本文提出了一种新方法,称为模块化语法演化(MGE),旨在验证以下假设:将神经进化的溶液空间限制为模块化和简单的神经网络的解决方案空间,可以有效地生成较小和结构化的神经网络,同时在大型数据集上提供可接受的(并且在某些情况下可以卓越)。 MGE还在两个方向上增强了最新的语法演化(GE)方法。首先,MGE的表示是模块化的,因为每个个体都有一组基因,并且每个基因都通过语法规则映射到神经元。其次,所提出的表示形式减轻了GE的两个重要缺点,即表示较低的表示性和弱位置,以生成具有大量神经元的模块化和多层网络。我们使用MGE定义和评估具有和不具有模块化的五种不同形式的结构,并找到没有耦合更有生产力的单层模块。我们的实验表明,模块化有助于更快地找到更好的神经网络。我们使用了十个具有不同尺寸,特征计数和输出类计数的众所周知的分类基准验证了提出的方法。我们的实验结果表明,MGE相对于现有的神经进化方法提供了卓越的准确性,并且返回分类器比其他机器学习生成的分类器要简单得多。最后,我们从经验上证明,MGE在局部和可伸缩性属性方面优于其他GE方法。

This paper presents a novel method, called Modular Grammatical Evolution (MGE), towards validating the hypothesis that restricting the solution space of NeuroEvolution to modular and simple neural networks enables the efficient generation of smaller and more structured neural networks while providing acceptable (and in some cases superior) accuracy on large data sets. MGE also enhances the state-of-the-art Grammatical Evolution (GE) methods in two directions. First, MGE's representation is modular in that each individual has a set of genes, and each gene is mapped to a neuron by grammatical rules. Second, the proposed representation mitigates two important drawbacks of GE, namely the low scalability and weak locality of representation, towards generating modular and multi-layer networks with a high number of neurons. We define and evaluate five different forms of structures with and without modularity using MGE and find single-layer modules with no coupling more productive. Our experiments demonstrate that modularity helps in finding better neural networks faster. We have validated the proposed method using ten well-known classification benchmarks with different sizes, feature counts, and output class count. Our experimental results indicate that MGE provides superior accuracy with respect to existing NeuroEvolution methods and returns classifiers that are significantly simpler than other machine learning generated classifiers. Finally, we empirically demonstrate that MGE outperforms other GE methods in terms of locality and scalability properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源