论文标题
海森堡组的球形最大算子:受限的扩张集
Spherical maximal operators on Heisenberg groups: Restricted dilation sets
论文作者
论文摘要
考虑具有编成两个发病率关系的海森伯格组的球形手段,以及相关的球形本地最大功能$ m_ef $,其中扩张仅限于设置$ e $。我们证明了这些最大运营商的$ l^p \ to l^q $估计;结果取决于$ e $的各种尺寸概念。
Consider spherical means on the Heisenberg group with a codimension two incidence relation, and associated spherical local maximal functions $M_Ef$ where the dilations are restricted to a set $E$. We prove $L^p\to L^q$ estimates for these maximal operators; the results depend on various notions of dimension of $E$.