论文标题

带有几乎确定性传感矩阵的正则线性回归的光谱普遍性

Spectral Universality of Regularized Linear Regression with Nearly Deterministic Sensing Matrices

论文作者

Dudeja, Rishabh, Sen, Subhabrata, Lu, Yue M.

论文摘要

已经观察到,相对于基本传感(或设计)矩阵,许多高维估计问题的性能是普遍的。具体而言,如果具有明显不同构造的矩阵,如果它们具有相同的光谱分布并具有``通用''singular vectors,则可以实现相同的性能。我们证明了这种普遍性现象对于带有加性高斯噪声的线性回归模型下的凸正同时最小二乘(RLS)估计器的情况。我们的主要贡献是两个方面:(1)我们引入了通过一组确定的确定性条件来定义的通用类别的概念,这些概念可以固定传感矩阵的光谱,并精确地捕获了先前的通用单数矢量的启发式概念; (2)我们表明,对于所有在同一普遍性类别中的感应矩阵,用于解决回归问题的近端梯度下降算法的动力学以及RLS估计器本身的性能(在额外的强凸条件下)是渐近的。除了包括I.I.D.高斯和旋转不变的矩阵作为特殊情况,我们的普遍性类也包含高度结构化的,密切的相关性,甚至(几乎)确定性矩阵。后者的示例包括随机签名的不连贯的紧密帧和随机取样的Hadamard变换。由于这一普遍性原则,可以通过使用旋转不变的集合作为等效但数学上更可拖动的替代物来表征许多具有有限随机性的结构化矩阵上的正规化线性回归的渐近性能。

It has been observed that the performances of many high-dimensional estimation problems are universal with respect to underlying sensing (or design) matrices. Specifically, matrices with markedly different constructions seem to achieve identical performance if they share the same spectral distribution and have ``generic'' singular vectors. We prove this universality phenomenon for the case of convex regularized least squares (RLS) estimators under a linear regression model with additive Gaussian noise. Our main contributions are two-fold: (1) We introduce a notion of universality classes for sensing matrices, defined through a set of deterministic conditions that fix the spectrum of the sensing matrix and precisely capture the previously heuristic notion of generic singular vectors; (2) We show that for all sensing matrices that lie in the same universality class, the dynamics of the proximal gradient descent algorithm for solving the regression problem, as well as the performance of RLS estimators themselves (under additional strong convexity conditions) are asymptotically identical. In addition to including i.i.d. Gaussian and rotational invariant matrices as special cases, our universality class also contains highly structured, strongly correlated, or even (nearly) deterministic matrices. Examples of the latter include randomly signed versions of incoherent tight frames and randomly subsampled Hadamard transforms. As a consequence of this universality principle, the asymptotic performance of regularized linear regression on many structured matrices constructed with limited randomness can be characterized by using the rotationally invariant ensemble as an equivalent yet mathematically more tractable surrogate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源