论文标题
在超复杂空间中集成知识图嵌入和验证的语言模型
Integrating Knowledge Graph embedding and pretrained Language Models in Hypercomplex Spaces
论文作者
论文摘要
Wikidata之类的知识图包括结构和文本知识,以表示知识。对于图形嵌入和语言模型的两种方式中的每种方法中的每种方法都学会了可以预测新型结构知识的模式。很少有方法与模式进行了整合和推断,而这些现有的方法只能部分利用结构和文本知识的相互作用。在我们的方法中,我们以单个模式的现有强烈表示为基础,并使用超复杂代数代表(i),(i),单模式嵌入以及(ii),不同模态之间的相互作用及其互补的知识表示手段。更具体地说,我们建议4D超复杂数字的二叶树和四个季度表示,以整合四个模式,即结构知识嵌入,文字级表示(例如\ \ word2vec,fastText,fastText),句子级别级别(句子transformer)(句子transformer)和文档级别表示(句子transformer,doc2vec)。我们的统一矢量表示通过汉密尔顿和二黑褐色产物进行标记边缘的合理性,从而对不同模态之间的成对相互作用进行建模。对标准基准数据集的广泛实验评估显示了我们两个新模型的优越性,除了稀疏的结构知识外,还可以提高链接预测任务中的性能。
Knowledge Graphs, such as Wikidata, comprise structural and textual knowledge in order to represent knowledge. For each of the two modalities dedicated approaches for graph embedding and language models learn patterns that allow for predicting novel structural knowledge. Few approaches have integrated learning and inference with both modalities and these existing ones could only partially exploit the interaction of structural and textual knowledge. In our approach, we build on existing strong representations of single modalities and we use hypercomplex algebra to represent both, (i), single-modality embedding as well as, (ii), the interaction between different modalities and their complementary means of knowledge representation. More specifically, we suggest Dihedron and Quaternion representations of 4D hypercomplex numbers to integrate four modalities namely structural knowledge graph embedding, word-level representations (e.g.\ Word2vec, Fasttext), sentence-level representations (Sentence transformer), and document-level representations (sentence transformer, Doc2vec). Our unified vector representation scores the plausibility of labelled edges via Hamilton and Dihedron products, thus modeling pairwise interactions between different modalities. Extensive experimental evaluation on standard benchmark datasets shows the superiority of our two new models using abundant textual information besides sparse structural knowledge to enhance performance in link prediction tasks.