论文标题

GDSB磁性膜的外延生长,磁磁性和电子带结构

Epitaxial growth, magnetoresistance, and electronic band structure of GdSb magnetic semimetal films

论文作者

Inbar, Hadass S., Ho, Dai Q., Chatterjee, Shouvik, Pendharkar, Mihir, Engel, Aaron N., Dong, Jason T., Khalid, Shoaib, Chang, Yu Hao, Guo, Taozhi, Fedorov, Alexei V., Lu, Donghui, Hashimoto, Makoto, Read, Dan, Janotti, Anderson, Palmstrøm, Christopher J.

论文摘要

在基于薄膜半学的新型旋转旋转型和等离子设备中,在稀有地球单局部化合物(RE-V)化合物(RE-V)化合物(RE-V)化合物(RE-V)化合物(RE-V)化合物(RE-V)的大量晶体中观察到的激励,我们研究了表位上的GDSB薄膜薄膜的电子带结构和运输行为。 GDSB中的GD3+离子具有高旋转s = 7/2,没有轨道角动量,它是研究抗磁性顺序和强烈交换耦合对RE-VS的FERMI表面和磁磁管特性的模型系统。我们提出了一项表面和结构表征研究,绘制了通过分子束外延在III-V晶格匹配的缓冲层上生长的薄薄外延GDSB膜的最佳合成窗口。为了确定限制RE-V薄膜中XMR的因素,并为RE-VS拓扑阶段的带结构预测提供了基准,研究了GDSB薄膜的电子带结构,比较了从Magnetotransport,Angle-Cromolved Messoverved光学光谱光谱(ARPES)和密度功能理论(DFT)计算中提取的载体密度。 ARPE显示出富含拓扑的孔载体,拓扑库学,这是几乎完全电子孔补偿的半金属谱带结构,在通过存在量子井状态下观察到的薄膜中具有量子限制效应。 DFT预测的费米波频率与从磁场依赖性电阻率测量中观察到的量子振荡获得的值非常吻合。尽管较高的孔载体密度归因于较高的电子霍尔迁移率,但仍测量富含电子的大厅系数。载体的迁移率受表面和界面散射的限制,导致磁力较低,而磁力却低于散装晶体。

Motivated by observations of extreme magnetoresistance (XMR) in bulk crystals of rare-earth monopnictide (RE-V) compounds and emerging applications in novel spintronic and plasmonic devices based on thin-film semimetals, we have investigated the electronic band structure and transport behavior of epitaxial GdSb thin films grown on III-V semiconductor surfaces. The Gd3+ ion in GdSb has a high spin S=7/2 and no orbital angular momentum, serving as a model system for studying the effects of antiferromagnetic order and strong exchange coupling on the resulting Fermi surface and magnetotransport properties of RE-Vs. We present a surface and structural characterization study mapping the optimal synthesis window of thin epitaxial GdSb films grown on III-V lattice-matched buffer layers via molecular beam epitaxy. To determine the factors limiting XMR in RE-V thin films and provide a benchmark for band structure predictions of topological phases of RE-Vs, the electronic band structure of GdSb thin films is studied, comparing carrier densities extracted from magnetotransport, angle-resolved photoemission spectroscopy (ARPES), and density functional theory (DFT) calculations. ARPES shows hole-carrier rich topologically-trivial semi-metallic band structure close to complete electron-hole compensation, with quantum confinement effects in the thin films observed through the presence of quantum well states. DFT predicted Fermi wavevectors are in excellent agreement with values obtained from quantum oscillations observed in magnetic field-dependent resistivity measurements. An electron-rich Hall coefficient is measured despite the higher hole carrier density, attributed to the higher electron Hall mobility. The carrier mobilities are limited by surface and interface scattering, resulting in lower magnetoresistance than that measured for bulk crystals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源