论文标题

从不平衡的长尾图像识别中构建平衡

Constructing Balance from Imbalance for Long-tailed Image Recognition

论文作者

Xu, Yue, Li, Yong-Lu, Li, Jiefeng, Lu, Cewu

论文摘要

长尾图像识别对深度学习系统提出了巨大的挑战,因为多数(头)类别与少数族裔(尾巴)类之间的不平衡严重偏向于数据驱动的深神经网络。以前的方法从数据分布,特征空间和模型设计等的角度来解决数据不平衡。在这项工作中,我们建议从先前省略的平衡标签空间的角度来面对分类器学习之前的头到尾偏见的瓶颈。为了减轻从头到尾的偏见,我们通过逐步调整标签空间并将头等阶层和尾部类别分开,动态构建平衡从不平衡到促进分类,提出简洁的范式。通过灵活的数据过滤和标签空间映射,我们可以轻松地将方法嵌入大多数分类模型,尤其是脱钩的训练方法。此外,我们发现头尾类别的可分离性在具有不同电感偏见的不同特征之间各不相同。因此,我们提出的模型还提供了一种功能评估方法,并为长尾特征学习铺平了道路。广泛的实验表明,我们的方法可以在广泛使用的基准上提高不同类型的最先进的性能。代码可在https://github.com/silicx/dlsa上找到。

Long-tailed image recognition presents massive challenges to deep learning systems since the imbalance between majority (head) classes and minority (tail) classes severely skews the data-driven deep neural networks. Previous methods tackle with data imbalance from the viewpoints of data distribution, feature space, and model design, etc. In this work, instead of directly learning a recognition model, we suggest confronting the bottleneck of head-to-tail bias before classifier learning, from the previously omitted perspective of balancing label space. To alleviate the head-to-tail bias, we propose a concise paradigm by progressively adjusting label space and dividing the head classes and tail classes, dynamically constructing balance from imbalance to facilitate the classification. With flexible data filtering and label space mapping, we can easily embed our approach to most classification models, especially the decoupled training methods. Besides, we find the separability of head-tail classes varies among different features with different inductive biases. Hence, our proposed model also provides a feature evaluation method and paves the way for long-tailed feature learning. Extensive experiments show that our method can boost the performance of state-of-the-arts of different types on widely-used benchmarks. Code is available at https://github.com/silicx/DLSA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源