论文标题
探索乘车问题的计算复杂性
Exploring Computational Complexity Of Ride-Pooling Problems
论文作者
论文摘要
骑行在计算上具有挑战性。可行的游乐设施的数量随旅行者的数量和学位(车辆的能力执行合并乘车的能力)而增长,并迅速爆炸到尺寸,使问题无法分析。实际上,应用启发式方法是为了限制搜索次数,例如最大绕道和延迟,或(就像我们在这项研究中使用的一样)有吸引力的游乐设施(对于折扣至少可以补偿折扣)。 然而,解决乘车驾驶的挑战仍然对问题设置非常敏感。在这里,我们更详细地探索它,并为这个开放研究问题提供了实验性的基础。我们追踪解决乘车问题所需的搜索空间和计算时间的大小,随着需求的增加和汇总提供的更高折扣而增长。我们在阿姆斯特丹进行了100多次实践实验,每小时10分钟的旅行请求每小时出行10分钟的旅行请求,并追踪提出有关EXMAS算法汇总问题的解决方案的挑战性。 我们观察到了强烈的非线性趋势,并确定了问题爆发的局限性,并且我们的算法未能计算。值得注意的是,我们发现需求水平(旅行请求数)不如折扣关键。搜索空间呈指数增长,并迅速达到巨大的水平。但是,在一定层面上,乘车问题的尺寸较大并不能转化为更高的合并效率。这为进一步的搜索空间提供了机会。
Ride-pooling is computationally challenging. The number of feasible rides grows with the number of travelers and the degree (capacity of the vehicle to perform a pooled ride) and quickly explodes to the sizes making the problem not solvable analytically. In practice, heuristics are applied to limit the number of searches, e.g., maximal detour and delay, or (like we use in this study) attractive rides (for which detour and delay are at least compensated with the discount). Nevertheless, the challenge to solve the ride-pooling remains strongly sensitive to the problem settings. Here, we explore it in more detail and provide an experimental underpinning to this open research problem. We trace how the size of the search space and computation time needed to solve the ride-pooling problem grows with the increasing demand and greater discounts offered for pooling. We run over 100 practical experiments in Amsterdam with 10-minute batches of trip requests up to 3600 trips per hour and trace how challenging it is to propose the solution to the pooling problem with our ExMAS algorithm. We observed strong, non-linear trends and identified the limits beyond which the problem exploded and our algorithm failed to compute. Notably, we found that the demand level (number of trip requests) is less critical than the discount. The search space grows exponentially and quickly reaches huge levels. However, beyond some level, the greater size of the ride-pooling problem does not translate into greater efficiency of pooling. Which opens the opportunity for further search space reductions.