论文标题
Dynkin箭过的总稳定性和Auslander-Reiten理论
Total stability and Auslander-Reiten theory for Dynkin quivers
论文作者
论文摘要
本文涉及鲁达科夫(Rudakov)引入的一般性中的dynkin Quivers的稳定性功能。我们表明,要完全稳定,需要满足相对较少的不平等现象(即使每个不可分解的稳定)。 Namely, a stability function $μ$ is totally stable if and only if $μ(τV) < μ(V)$ for every almost split sequence $0 \to τV \to E \to V \to 0$ where $E$ is indecomposable.这些可以可视化为奥斯兰德 - 雷氏箭袋“边界”周围的那些序列。
This paper concerns stability functions for Dynkin quivers, in the generality introduced by Rudakov. We show that relatively few inequalities need to be satisfied for a stability function to be totally stable (i.e. to make every indecomposable stable). Namely, a stability function $μ$ is totally stable if and only if $μ(τV) < μ(V)$ for every almost split sequence $0 \to τV \to E \to V \to 0$ where $E$ is indecomposable. These can be visualized as those sequences around the "border" of the Auslander-Reiten quiver.