论文标题
需要融合和异性的环形限制
Required toroidal confinement for fusion and omnigeneity
论文作者
论文摘要
与碰撞时间相比,氘境(DT)燃烧需要较长的能量限制时间,因此粒子分布函数必须近似局部 - 麦克斯威尔人。非平衡热力学是适用的,它可以在运输,熵产生,碰撞频率和与麦克斯韦的偏差之间存在关系。分布函数由Fokker-Planck方程给出,这是对流扩散方程。一个大型双曲操作员,具有粒子轨迹作为特征的弗拉索夫操作员等于一个小的扩散操作员,即碰撞操作员。无碰撞的颗粒轨迹将在恒星中混乱,而无需仔细优化。这将导致快速的熵产生和运输 - 远远超出了与自我维持的DT燃烧相一致的。无限性是最弱的一般条件,与与热颗粒轨迹相关的足够小的熵产生一致。全能性要求将恒定磁场强度的轮廓在磁性表面的两个角坐标中至少无限,并且沿田间线沿田间强度的井中有对称性。即使在异族等离子体中,由于微扰动性引起的波动也会产生混乱的颗粒轨迹以及在许多恒星和Tokamak实验中看到的陀螺仪传输。血浆温度高于10 〜KEV的越高,必须将传输与陀螺仪进行比较,以进行自我维持的DT燃烧。 DT融合的热量加热电子。与离子能量限制时间相比,离子电子平衡时间长,不可能自我维持的DT燃烧,这设定了电子温度的限制。
Deuterium-tritium (DT) burning requires a long energy confinement times compared to collision times, so the particle distribution functions must approximate local-Maxwellians. Non-equilibrium thermodynamics is applicable, which gives relations among transport, entropy production, the collision frequency, and the deviation from a Maxwellian. The distribution functions are given by the Fokker-Planck equation, which is an advection-diffusion equation. A large hyperbolic operator, the Vlasov operator with the particle trajectories as its characteristics, equals a small diffusive operator, the collision operator. The collisionless particle trajectories would be chaotic in stellarators without careful optimization. This would lead to rapid entropy production and transport -- far beyond what is consistent with a self-sustaining DT burn. Omnigeneity is the weakest general condition that is consistent with a sufficiently small entropy production associated with the thermal particle trajectories. Omnigeneity requires that the contours of constant magnetic field strength be unbounded in at least one of the two angular coordinates in magnetic surfaces and that there be a symmetry in the field-strength wells along the field lines. Even in omnigenous plasmas, fluctuations due to microturbulence can produce chaotic particle trajectories and the gyro-Bohm transport seen in many stellarator and tokamak experiments. The higher the plasma temperature above 10~keV, the smaller the transport must be compared to gyro-Bohm for a self-sustaining DT burn. The hot alphas of DT fusion heat the electrons. When the ion-electron equilibration time is long compared to the ion energy confinement time, a self-sustaining DT burn is not possible, which sets a limit on the electron temperature.