论文标题

Hecke $ l $ form to Angular字符的极端值

Extreme values of Hecke $L$-functions to angular characters

论文作者

White, Daniel

论文摘要

令$ k $为一个虚构的二次数字字段,让$ l(s,ξ_ {\ ell})$表示hecke $ l $ - 函数$ \ ell $。我们检测$ \ log | l(\ tfrac12,ξ_ {\ ell})| $,其大小至少$ $(\ sqrt {2} + o_k(1))(\ log x / \ log x / \ log \ log x)该结果取决于共振方法,该方法首次应用于这个$ l $ functions的家族,其中对角线术语的分类和提取取决于$ k $的复杂嵌入的几何形状。

Let $K$ be an imaginary quadratic number field and let $L(s,ξ_{\ell})$ denote the Hecke $L$-function to an angular character $ξ_{\ell}$ with frequency $\ell$. We detect values of $\log |L(\tfrac12,ξ_{\ell})|$ with size at least $(\sqrt{2} + o_K(1))(\log X / \log \log X)^{1/2}$ along each dyadic range $X \leqslant \ell \leqslant 2X$. This result relies on the resonance method, which is applied for the first time to this family of $L$-functions, where the classification and extraction of diagonal terms depends on the geometry of the complex embedding of $K$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源