论文标题

估计频率接近零的光谱密度

Estimating the Spectral Density at Frequencies Near Zero

论文作者

McElroy, Tucker, Politis, Dimitris

论文摘要

传统上,估计[-π,π] $的某些$ w \的光谱密度函数$ f(w)$是由内核平滑进行期刊和相关技术的。内核平滑度与局部平均值(即,在宽度较小的窗口上的常数近似于$ f(w)$)的差异。尽管$ f(w)$是统一的连续且周期性的$2π$,但在本文中,我们认识到,$ W = 0 $有效地充当基础内核平滑问题的边界点,而对于$ W = \pmπ$,也是如此。众所周知,在边界点(或接近)的内核回归中,局部平均可能是次优的。作为替代方案,当$ w $处于(或接近)0或$ \pmπ$时,我们提出了周期图或log periodogram的本地多项式回归。 $ w = 0 $的情况非常重要,因为$ f(0)$是样本平均值的大样本差异;因此,估计$ f(0)$对于对平均值进行任何推断至关重要。

Estimating the spectral density function $f(w)$ for some $w\in [-π, π]$ has been traditionally performed by kernel smoothing the periodogram and related techniques. Kernel smoothing is tantamount to local averaging, i.e., approximating $f(w)$ by a constant over a window of small width. Although $f(w)$ is uniformly continuous and periodic with period $2π$, in this paper we recognize the fact that $w=0$ effectively acts as a boundary point in the underlying kernel smoothing problem, and the same is true for $w=\pm π$. It is well-known that local averaging may be suboptimal in kernel regression at (or near) a boundary point. As an alternative, we propose a local polynomial regression of the periodogram or log-periodogram when $w$ is at (or near) the points 0 or $\pm π$. The case $w=0$ is of particular importance since $f(0)$ is the large-sample variance of the sample mean; hence, estimating $f(0)$ is crucial in order to conduct any sort of inference on the mean.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源