论文标题

LANESNNS:在Loihi神经形态处理器上进行车道检测的尖峰神经网络

LaneSNNs: Spiking Neural Networks for Lane Detection on the Loihi Neuromorphic Processor

论文作者

Viale, Alberto, Marchisio, Alberto, Martina, Maurizio, Masera, Guido, Shafique, Muhammad

论文摘要

自动驾驶(AD)相关的功能代表了下一代移动机器人和专注于越来越智能,自主和互连系统的自动驾驶汽车的重要元素。根据定义,必须提供涉及使用这些功能的应用程序,并且此属性是避免灾难性事故的关键。此外,所有决策过程都必须需要低功耗,以增加电池驱动系统的寿命和自主权。这些挑战可以通过有效实施神经形态芯片上的尖峰神经网络(SNN)以及使用基于事件的相机而不是传统基于框架的摄像机来解决这些挑战。 在本文中,我们提出了一种新的基于SNN的方法,称为Lanesnn,用于使用基于事件的相机输入来检测街道上标记的车道。我们开发了四种以低复杂性和快速响应为特征的新型SNN模型,并使用离线监督的学习规则训练它们。之后,我们将学习的SNNS模型实施并映射到Intel Loihi神经形态研究芯片上。对于损耗函数,我们基于加权二进制交叉熵(WCE)和均方误差(MSE)度量的线性组成而开发了一种新颖的方法。我们的实验结果表明,与联合(IOU)度量的最大交点约为0.62,功耗非常低约1W。最好的IOU是通过SNN实现实现的,该实现仅占据Loihi处理器上的36个神经可孔,而低潜伏期的低潜伏率则提供了不到8 ms的低潜伏期来识别图像,从而识别出一个实现实时性能。我们网络提供的IOU措施与最新的措施相当,但功率消耗为1 W。

Autonomous Driving (AD) related features represent important elements for the next generation of mobile robots and autonomous vehicles focused on increasingly intelligent, autonomous, and interconnected systems. The applications involving the use of these features must provide, by definition, real-time decisions, and this property is key to avoid catastrophic accidents. Moreover, all the decision processes must require low power consumption, to increase the lifetime and autonomy of battery-driven systems. These challenges can be addressed through efficient implementations of Spiking Neural Networks (SNNs) on Neuromorphic Chips and the use of event-based cameras instead of traditional frame-based cameras. In this paper, we present a new SNN-based approach, called LaneSNN, for detecting the lanes marked on the streets using the event-based camera input. We develop four novel SNN models characterized by low complexity and fast response, and train them using an offline supervised learning rule. Afterward, we implement and map the learned SNNs models onto the Intel Loihi Neuromorphic Research Chip. For the loss function, we develop a novel method based on the linear composition of Weighted binary Cross Entropy (WCE) and Mean Squared Error (MSE) measures. Our experimental results show a maximum Intersection over Union (IoU) measure of about 0.62 and very low power consumption of about 1 W. The best IoU is achieved with an SNN implementation that occupies only 36 neurocores on the Loihi processor while providing a low latency of less than 8 ms to recognize an image, thereby enabling real-time performance. The IoU measures provided by our networks are comparable with the state-of-the-art, but at a much low power consumption of 1 W.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源