论文标题

块离散经验插值方法

Block Discrete Empirical Interpolation Methods

论文作者

Gidisu, Perfect Y., Hochstenbach, Michiel E.

论文摘要

我们提出了离散经验插值法(Deim)的块变体;作为一种特定的应用程序,我们将考虑一个cur分解。块DEIM算法基于最大体积的概念和远程vealing QR分解。我们还提供了块Deim过程的版本,该版本允许自适应块大小。实验的结果表明,与标准DEIM程序相比,块DEIM算法对于低级矩阵近似值表现出可比的精度。但是,DEIM算法也表现出潜在的计算优势,从而显示了计算时间的提高效率。

We present block variants of the discrete empirical interpolation method (DEIM); as a particular application, we will consider a CUR factorization. The block DEIM algorithms are based on the concept of the maximum volume of submatrices and a rank-revealing QR factorization. We also present a version of the block DEIM procedures, which allows for adaptive choice of block size. The results of the experiments indicate that the block DEIM algorithms exhibit comparable accuracy for low-rank matrix approximation compared to the standard DEIM procedure. However, the block DEIM algorithms also demonstrate potential computational advantages, showcasing increased efficiency in terms of computational time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源