论文标题
一项关于粤语神经语音综合中建模语调升高的研究
A Study of Modeling Rising Intonation in Cantonese Neural Speech Synthesis
论文作者
论文摘要
在人类的言论中,说话者的态度不能只用文本内容充分表达。它必须带有语调。声明性的问题通常用于日常的广东话对话中,通常会以不断增长的语调发出。香草神经文本到语音(TTS)系统由于语义信息的丢失而无法为这些句子综合这些句子的上升语调。尽管使用额外的语言模型对系统进行补充已经变得越来越普遍,但它们在建模升起的语调方面的性能尚未得到很好的研究。在本文中,我们建议通过基于BERT的语句/问题分类器来补充广州TTS模型。我们设计了不同的培训策略并比较他们的表现。我们在一个名为Cantts的粤语语料库上进行实验。经验结果表明,单独的培训方法获得了最佳的概括性能和可行性。
In human speech, the attitude of a speaker cannot be fully expressed only by the textual content. It has to come along with the intonation. Declarative questions are commonly used in daily Cantonese conversations, and they are usually uttered with rising intonation. Vanilla neural text-to-speech (TTS) systems are not capable of synthesizing rising intonation for these sentences due to the loss of semantic information. Though it has become more common to complement the systems with extra language models, their performance in modeling rising intonation is not well studied. In this paper, we propose to complement the Cantonese TTS model with a BERT-based statement/question classifier. We design different training strategies and compare their performance. We conduct our experiments on a Cantonese corpus named CanTTS. Empirical results show that the separate training approach obtains the best generalization performance and feasibility.