论文标题

检测零已知标签的多元时间序列异常

Detecting Multivariate Time Series Anomalies with Zero Known Label

论文作者

Zhou, Qihang, Chen, Jiming, Liu, Haoyu, He, Shibo, Meng, Wenchao

论文摘要

多元时间序列异常检测已在半监督的设置下进行了广泛的研究,其中需要所有具有正常实例的训练数据集。但是,准备这样的数据集非常费力,因为每个数据实例应完全保证是正常的。因此,希望在没有任何标签知识的情况下基于数据集探索多元时间序列异常检测方法。在本文中,我们提出了MTGFLOF,这是通过动态图和实体意识到的归一化流量进行多变量时间序列异常检测的无监督异常检测方法,仅依靠广泛接受的假设,即异常实例比正常情况表现出稀疏的密度。但是,实体之间的复杂相互依赖性以及每个实体的不同固有特征对密度估计提出了重大挑战,更不用说基于估计的可能性分布来检测异常。为了解决这些问题,我们建议通过图形结构学习模型来学习实体之间的相互和动态关系,这有助于建模多元时间序列的准确分布。此外,考虑到各个实体的不同特征,开发了一个实体觉醒的流动,以将每个实体描述为参数化的正态分布,从而产生细粒密度估计。结合了这两种策略,MTGFLOW实现了出色的异常检测性能。进行了五个带有七个基线的公共数据集的实验,MTGFlow的表现高于SOTA方法高达5.0 AUROC \%。代码将在https://github.com/zqhang/detecting-multivariate time-series-series-anmalies-with-Zero-Zero-Newonn-Label上发布。

Multivariate time series anomaly detection has been extensively studied under the semi-supervised setting, where a training dataset with all normal instances is required. However, preparing such a dataset is very laborious since each single data instance should be fully guaranteed to be normal. It is, therefore, desired to explore multivariate time series anomaly detection methods based on the dataset without any label knowledge. In this paper, we propose MTGFlow, an unsupervised anomaly detection approach for multivariate time series anomaly detection via dynamic graph and entity-aware normalizing flow, leaning only on a widely accepted hypothesis that abnormal instances exhibit sparse densities than the normal. However, the complex interdependencies among entities and the diverse inherent characteristics of each entity pose significant challenges on the density estimation, let alone to detect anomalies based on the estimated possibility distribution. To tackle these problems, we propose to learn the mutual and dynamic relations among entities via a graph structure learning model, which helps to model accurate distribution of multivariate time series. Moreover, taking account of distinct characteristics of the individual entities, an entity-aware normalizing flow is developed to describe each entity into a parameterized normal distribution, thereby producing fine-grained density estimation. Incorporating these two strategies, MTGFlow achieves superior anomaly detection performance. Experiments on five public datasets with seven baselines are conducted, MTGFlow outperforms the SOTA methods by up to 5.0 AUROC\%. Codes will be released at https://github.com/zqhang/Detecting-Multivariate-Time-Series-Anomalies-with-Zero-Known-Label.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源