论文标题

卷积细颗粒分类,具有自我监督的目标关系正则化

Convolutional Fine-Grained Classification with Self-Supervised Target Relation Regularization

论文作者

Liu, Kangjun, Chen, Ke, Jia, Kui

论文摘要

可以通过对手动预定义目标的监督(例如,一hot或Hadamard代码)进行深入的表示学习来解决细粒度的视觉分类。此类目标编码方案对于模拟类间相关性的灵活性不太灵活,并且对稀疏和不平衡的数据分布也很敏感。鉴于此,本文介绍了一种新型的目标编码方案 - 动态目标关系图(DTRG),作为辅助特征正则化,是一个自生成的结构输出,可根据输入图像映射。具体而言,类级特征中心的在线计算旨在在表示空间中生成跨类别距离,因此可以通过非参数方式通过动态图来描绘。明确最大程度地减少锚定在这些班级中心的类内特征变化可以鼓励学习判别特征。此外,由于利用了类间的依赖性,提出的目标图可以减轻代表学习中的数据稀疏性和不稳定。受混合风格数据增强的最新成功的启发,本文将随机性引入了动态目标关系图的软结构,以进一步探索目标类别的关系多样性。实验结果可以证明我们方法对多个视觉分类任务的许多不同基准的有效性,尤其是在流行的细粒对象基准上实现最新性能,并针对稀疏和不平衡的数据进行出色的鲁棒性。源代码可在https://github.com/akonlau/dtrg上公开提供。

Fine-grained visual classification can be addressed by deep representation learning under supervision of manually pre-defined targets (e.g., one-hot or the Hadamard codes). Such target coding schemes are less flexible to model inter-class correlation and are sensitive to sparse and imbalanced data distribution as well. In light of this, this paper introduces a novel target coding scheme -- dynamic target relation graphs (DTRG), which, as an auxiliary feature regularization, is a self-generated structural output to be mapped from input images. Specifically, online computation of class-level feature centers is designed to generate cross-category distance in the representation space, which can thus be depicted by a dynamic graph in a non-parametric manner. Explicitly minimizing intra-class feature variations anchored on those class-level centers can encourage learning of discriminative features. Moreover, owing to exploiting inter-class dependency, the proposed target graphs can alleviate data sparsity and imbalanceness in representation learning. Inspired by recent success of the mixup style data augmentation, this paper introduces randomness into soft construction of dynamic target relation graphs to further explore relation diversity of target classes. Experimental results can demonstrate the effectiveness of our method on a number of diverse benchmarks of multiple visual classification tasks, especially achieving the state-of-the-art performance on popular fine-grained object benchmarks and superior robustness against sparse and imbalanced data. Source codes are made publicly available at https://github.com/AkonLau/DTRG.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源