论文标题
PALQUANT:在低精度加速器上加速高精度网络
PalQuant: Accelerating High-precision Networks on Low-precision Accelerators
论文作者
论文摘要
最近,低精确的深度学习加速器(DLA)由于其在芯片区域和能源消耗方面的优势而变得流行,但是这些DLA上的低精确量化模型导致严重的准确性降低。达到高精度和高效推断的一种方法是在低精度DLA上部署高精度神经网络,这很少被研究。在本文中,我们提出了平行的低精确量化(PALQUANT)方法,该方法通过从头开始学习并行低精度表示来近似高精度计算。此外,我们提出了一个新型的循环洗牌模块,以增强平行低精度组之间的跨组信息通信。广泛的实验表明,PALQUANT具有准确性和推理速度的最先进量化方法,例如,对于RESNET-18网络量化,PALQUANT可以同时获得0.52 \%的准确性和1.78 $ \ times $ $ speedup,而同时在其4位的总体柜台上,在其4位的柜台上,这是一个州立大学的2-1级加速器。代码可在\ url {https://github.com/huqinghao/palquant}上找到。
Recently low-precision deep learning accelerators (DLAs) have become popular due to their advantages in chip area and energy consumption, yet the low-precision quantized models on these DLAs bring in severe accuracy degradation. One way to achieve both high accuracy and efficient inference is to deploy high-precision neural networks on low-precision DLAs, which is rarely studied. In this paper, we propose the PArallel Low-precision Quantization (PalQuant) method that approximates high-precision computations via learning parallel low-precision representations from scratch. In addition, we present a novel cyclic shuffle module to boost the cross-group information communication between parallel low-precision groups. Extensive experiments demonstrate that PalQuant has superior performance to state-of-the-art quantization methods in both accuracy and inference speed, e.g., for ResNet-18 network quantization, PalQuant can obtain 0.52\% higher accuracy and 1.78$\times$ speedup simultaneously over their 4-bit counter-part on a state-of-the-art 2-bit accelerator. Code is available at \url{https://github.com/huqinghao/PalQuant}.