论文标题

一般二维Dilaton黑洞的纠缠岛

Entanglement Islands in Generalized Two-dimensional Dilaton Black Holes

论文作者

Yu, Ming-Hui, Ge, Xian-Hui

论文摘要

Fabbri-Russo模型是二维Dilaton重力理论的广义模型,其各种参数“ $ n $”描述了各种特定的重力。特别是,Russo-susskind-thorlacius重力模型适合$ n = 1 $。在Fabbri-Russo模型中,我们研究了页面曲线和纠缠岛。岛屿被认为是永恒和蒸发的黑洞。令人惊讶的是,在任何黑洞中,岛屿的出现都会导致辐射的纠缠熵的上升在页面时间后减速,从而满足单位性原则。对于永恒的黑洞,细粒熵达到的饱和值是Bekenstein-Hawking熵的两倍。为了蒸发黑洞,细粒熵最终达到零。参数“ $ n $”在极早的时间时期显着影响页面曲线。但是,在后期和较大的距离限制下,参数“ $ n $”的影响是一个跨倾斜术语,被指数抑制。结果,页面曲线的形状为“ $ n $” - 独立于领先顺序。此外,我们讨论了岛屿与防火墙之间的关系。我们表明,岛上的候选人比防火墙更好,因为遇到了量子纠缠的婚姻问题。最后,我们将重力/集合二元性简要介绍为对国家公式产生的国家难题的潜在解决方案。

The Fabbri-Russo model is a generalized model of a two-dimensional dilaton gravity theory with various parameters "$n$" describing various specific gravities. Particularly, the Russo-Susskind-Thorlacius gravity model fits the case $n=1$. In the Fabbri-Russo model, we investigate Page curves and the entanglement island. Islands are considered in eternal and evaporating black holes. Surprisingly, in any black hole, the emergence of islands causes the rise of the entanglement entropy of the radiation to decelerate after the Page time, satisfying the principle of unitarity. For eternal black holes, the fine-grained entropy reaches a saturation value that is twice the Bekenstein-Hawking entropy. For evaporating black holes, the fine-grained entropy finally reaches zero. The parameter "$n$" significantly impacts the Page curve at extremely early times. However, at late times and large distance limit, the impact of the parameter "$n$" is a subleading term and is exponentially suppressed. As a result, the shape of Page curves is "$n$"-independent in the leading order. Furthermore, we discuss the relationship between islands and firewalls. We show that the island is a better candidate than firewalls for encountering the quantum entanglement-monogamy problem. Finally, we briefly review the gravity/ensemble duality as a potential resolution to the state conundrum resulting from the island formula.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源