论文标题
$ \ mathrm {sl} _2(\ mathbb {z})$的Weil表示的不变性
The invariants of the Weil representation of $\mathrm{SL}_2(\mathbb{Z})$
论文作者
论文摘要
矢量的转换行为估价了theta的theta函数,即在Metapclect组$ \ mathrm {Mp} _2(\ Mathbb {Z})$下的晶格的转换行为。我们表明,这种表示的不变性是从$ 5 $基本不变的。作为应用程序,我们为雅各比形式的单数重量提供了简单的生成集。
The transformation behaviour of the vector valued theta function of a positive-definite even lattice under the metaplectic group $\mathrm{Mp}_2(\mathbb{Z})$ is described by the Weil representation. We show that the invariants of this representation are induced from $5$ fundamental invariants. As an application we give simple generating sets for Jacobi forms of singular weight.