论文标题

一种深度学习方法,以检测燃烧系统中的精益井喷

A Deep Learning Approach to Detect Lean Blowout in Combustion Systems

论文作者

Gangopadhyay, Tryambak, De, Somnath, Liu, Qisai, Mukhopadhyay, Achintya, Sen, Swarnendu, Sarkar, Soumik

论文摘要

精益燃烧对环境友好,NOX排放率低,并且在燃烧系统中还提供了更好的燃油效率。但是,接近瘦燃烧会使引擎更容易易受益智井喷。精益井喷(LBO)是一种不希望的现象,会导致突然的火焰灭绝,从而导致突然失去权力。在设计阶段,对于科学家来说,准确确定最佳的操作限制以避免突然的LBO发生非常具有挑战性。因此,至关重要的是,在低NOx发动机中,为在线LBO检测开发准确且可计算的框架至关重要。据我们所知,我们第一次提出了一种深度学习方法来检测燃烧系统中的精益井喷。在这项工作中,我们利用实验室规模的燃烧器收集不同协议的数据。对于每个协议,我们远离LBO,并逐渐朝LBO制度移动,在每个条件下捕获一个准静态时间序列数据集。使用数据集中的一个协议作为参考协议,并在域专家注释的条件下,我们找到了经过培训的深度学习模型的过渡状态指标,以在其他测试协议中检测LBO。我们发现,我们所提出的方法比其他基线模型更准确和计算更快,以检测到LBO的过渡。因此,我们建议使用精益燃烧引擎中实时性能监视的方法。

Lean combustion is environment friendly with low NOx emissions and also provides better fuel efficiency in a combustion system. However, approaching towards lean combustion can make engines more susceptible to lean blowout. Lean blowout (LBO) is an undesirable phenomenon that can cause sudden flame extinction leading to sudden loss of power. During the design stage, it is quite challenging for the scientists to accurately determine the optimal operating limits to avoid sudden LBO occurrence. Therefore, it is crucial to develop accurate and computationally tractable frameworks for online LBO detection in low NOx emission engines. To the best of our knowledge, for the first time, we propose a deep learning approach to detect lean blowout in combustion systems. In this work, we utilize a laboratory-scale combustor to collect data for different protocols. We start far from LBO for each protocol and gradually move towards the LBO regime, capturing a quasi-static time series dataset at each condition. Using one of the protocols in our dataset as the reference protocol and with conditions annotated by domain experts, we find a transition state metric for our trained deep learning model to detect LBO in the other test protocols. We find that our proposed approach is more accurate and computationally faster than other baseline models to detect the transitions to LBO. Therefore, we recommend this method for real-time performance monitoring in lean combustion engines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源