论文标题
贝叶斯验证失控电子模拟的方法
Bayesian approach for validation of runaway electron simulations
论文作者
论文摘要
未来融合反应器中的血浆末端破坏可能导致初始电流转换为相对论失控的电子束。需要经过验证的预测工具来优化场景和缓解执行器,以避免此类事件可能造成的过度损害。融合能源研究中应用的许多仿真工具都要求用户指定几个不受可用实验信息约束的输入参数。因此,典型的验证练习需要优化多参数,以校准不确定的输入参数,以最佳地表示所研究的物理系统。专家建模者基于域知识进行参数校准的常规方法很容易导致棘手的验证挑战。对于典型的模拟,进行详尽的多参数调查以确保全球最佳解决方案并严格量化不确定性是一项无法实现的任务,这通常仅部分和非系统地涵盖。贝叶斯推理算法提供了一种有希望的替代方法,该方法自然包含不确定性量化,并且在选择输入参数时对用户偏见的主观较低。使用这些方法的主要挑战是模拟足够的样本以构建不确定输入参数的后验分布的计算成本。可以通过将概率的替代建模(例如高斯过程回归)与贝叶斯优化相结合,可以克服这一挑战,从而可以将所需模拟的数量减少几个数量级。在这里,我们为模型实施了这种类型的贝叶斯优化框架,以分析中断失控电子的模型,并探索用氩气诱导的破坏在喷气等离子体放电中当前淬火的模拟。
Plasma-terminating disruptions in future fusion reactors may result in conversion of the initial current to a relativistic runaway electron beam. Validated predictive tools are required to optimize the scenarios and mitigation actuators to avoid the excessive damage that can be caused by such events. Many of the simulation tools applied in fusion energy research require the user to specify several input parameters that are not constrained by the available experimental information. Hence, a typical validation exercise requires multiparameter optimization to calibrate the uncertain input parameters for the best possible representation of the investigated physical system. The conventional approach, where an expert modeler conducts the parameter calibration based on domain knowledge, is prone to lead to an intractable validation challenge. For a typical simulation, conducting exhaustive multiparameter investigations manually to ensure a globally optimal solution and to rigorously quantify the uncertainties is an unattainable task, typically covered only partially and unsystematically. Bayesian inference algorithms offer a promising alternative approach that naturally includes uncertainty quantification and is less subjective to user bias in choosing the input parameters. The main challenge in using these methods is the computational cost of simulating enough samples to construct the posterior distributions for the uncertain input parameters. This challenge can be overcome by combining probabilistic surrogate modelling, such as Gaussian Process regression, with Bayesian optimization, which can reduce the number of required simulations by several orders of magnitude. Here, we implement this type of Bayesian optimization framework for a model for analysis of disruption runaway electrons, and explore for simulations of current quench in a JET plasma discharge with an argon induced disruption.