论文标题
通过分离的表示学习在异性图上的链接预测
Link Prediction on Heterophilic Graphs via Disentangled Representation Learning
论文作者
论文摘要
链接预测是一项重要的任务,在各个域中具有广泛的应用程序。但是,大多数现有的链接预测方法都假定给定的图遵循同质假设,并设计基于相似性的启发式方法或表示链接的表示方法来预测链接。但是,许多现实世界图是异性图,同义假设不存在,这挑战了现有的链接预测方法。通常,在异性图中,有许多引起链接形成的潜在因素,而两个链接的节点在一个或两个因素中往往相似,但在其他因素中可能不同,导致总体相似性较低。因此,一种方法是学习每个节点的分离表示,每个矢量捕获一个因子对节点的潜在表示,这铺平了一种方法,可以在异性图中建模链接形成的方法,从而获得更好的节点表示学习和链接预测性能。但是,对此的工作非常有限。因此,在本文中,我们研究了一个新的问题,即探索异性图上链接预测的分离表示学习。我们提出了一种新颖的框架分解,可以通过建模链接形成并执行感知因素的消息来促进链接预测,从而学习解开表示的表示。对13个现实世界数据集进行的广泛实验证明了Disenlink对异性和血友病图的链接预测的有效性。我们的代码可从https://github.com/sjz5202/disenlink获得
Link prediction is an important task that has wide applications in various domains. However, the majority of existing link prediction approaches assume the given graph follows homophily assumption, and designs similarity-based heuristics or representation learning approaches to predict links. However, many real-world graphs are heterophilic graphs, where the homophily assumption does not hold, which challenges existing link prediction methods. Generally, in heterophilic graphs, there are many latent factors causing the link formation, and two linked nodes tend to be similar in one or two factors but might be dissimilar in other factors, leading to low overall similarity. Thus, one way is to learn disentangled representation for each node with each vector capturing the latent representation of a node on one factor, which paves a way to model the link formation in heterophilic graphs, resulting in better node representation learning and link prediction performance. However, the work on this is rather limited. Therefore, in this paper, we study a novel problem of exploring disentangled representation learning for link prediction on heterophilic graphs. We propose a novel framework DisenLink which can learn disentangled representations by modeling the link formation and perform factor-aware message-passing to facilitate link prediction. Extensive experiments on 13 real-world datasets demonstrate the effectiveness of DisenLink for link prediction on both heterophilic and hemophiliac graphs. Our codes are available at https://github.com/sjz5202/DisenLink