论文标题

基于事后可解释性的参数选择针对数据导向的核反应堆事故诊断系统

Post-hoc Interpretability based Parameter Selection for Data Oriented Nuclear Reactor Accident Diagnosis System

论文作者

Li, Chengyuan, Li, Meifu, Qiu, Zhifang

论文摘要

在应用面向数据的诊断系统以区分核电站初始事件的严重程度的类型和评估时,决定将哪些参数用作系统输入至关重要。但是,尽管几个诊断系统已经在诊断精度和速度方面取得了可接受的表现,但研究人员几乎没有讨论监测点选择点及其布局的方法。因此,冗余测量数据用于训练诊断模型,从而导致分类的高度不确定性,额外的训练时间消耗以及培训时过度拟合的可能性更高。在这项研究中,使用深度学习中事后解释性理论的理论提出了一种选择核电站热液压参数的方法。一开始,引入了新型的时间序列残留卷积神经网络(TRES-CNN)诊断模型,以使用在HPR1000上手动选择的38个参数,以确定LOCA中断裂的位置和流体动力学直径。之后,应用事后可解释性方法用于评估诊断模型的输出的归因,从而在诊断LOCA详细信息时确定哪些15个参数更具决定性。结果表明,基于TRE的诊断模型通过选定的15个HPR1000参数成功地预测了LOCA中断裂的位置和大小,而训练模型的时间消耗的25%使用总计38个参数进行了比较。此外,与模型相比,使用经验选择的参数相比,相对诊断准确性误差在1.5%以内,可以看作是相同数量的诊断可靠性。

During applying data-oriented diagnosis systems to distinguishing the type of and evaluating the severity of nuclear power plant initial events, it is of vital importance to decide which parameters to be used as the system input. However, although several diagnosis systems have already achieved acceptable performance in diagnosis precision and speed, hardly have the researchers discussed the method of monitoring point choosing and its layout. For this reason, redundant measuring data are used to train the diagnostic model, leading to high uncertainty of the classification, extra training time consumption, and higher probability of overfitting while training. In this study, a method of choosing thermal hydraulics parameters of a nuclear power plant is proposed, using the theory of post-hoc interpretability theory in deep learning. At the start, a novel Time-sequential Residual Convolutional Neural Network (TRES-CNN) diagnosis model is introduced to identify the position and hydrodynamic diameter of breaks in LOCA, using 38 parameters manually chosen on HPR1000 empirically. Afterwards, post-hoc interpretability methods are applied to evaluate the attributions of diagnosis model's outputs, deciding which 15 parameters to be more decisive in diagnosing LOCA details. The results show that the TRES-CNN based diagnostic model successfully predicts the position and size of breaks in LOCA via selected 15 parameters of HPR1000, with 25% of time consumption while training the model compared the process using total 38 parameters. In addition, the relative diagnostic accuracy error is within 1.5 percent compared with the model using parameters chosen empirically, which can be regarded as the same amount of diagnostic reliability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源