论文标题
使用线性倒置的摆动和神经适应
Resolved Motion Control for 3D Underactuated Bipedal Walking using Linear Inverted Pendulum Dynamics and Neural Adaptation
论文作者
论文摘要
我们提出了一个框架,以使用基于适应性神经调节的基于线性的倒置摆(LIP)控制器来生成3D发导的两足机器人的周期性轨迹参考。我们使用LIP模板模型在当前步骤结束时估算机器人的质量(COM)位置和速度,并制定一个离散控制器,该控制器确定下一个脚步位置以实现所需的步行配置文件。该控制器配备了基于神经网络的自适应术语,该术语降低了模型与模板和物理机器人之间的不匹配,这特别影响了横向运动。然后,使用针对唇部模型计算的脚部放置位置用于生成任务空间轨迹(COM和摇摆脚部轨迹),以使实际的机器人实现稳定的步行。我们使用快速,实时的基于QP的逆运动算法,该算法从任务空间轨迹中产生联合参考,这使得配方与机器人动力学的知识无关。最后,我们使用数字机器人在两种情况下都获得了稳定的周期性运动,在模拟和硬件实验中实现并评估了所提出的方法。
We present a framework to generate periodic trajectory references for a 3D under-actuated bipedal robot, using a linear inverted pendulum (LIP) based controller with adaptive neural regulation. We use the LIP template model to estimate the robot's center of mass (CoM) position and velocity at the end of the current step, and formulate a discrete controller that determines the next footstep location to achieve a desired walking profile. This controller is equipped on the frontal plane with a Neural-Network-based adaptive term that reduces the model mismatch between the template and physical robot that particularly affects the lateral motion. Then, the foot placement location computed for the LIP model is used to generate task space trajectories (CoM and swing foot trajectories) for the actual robot to realize stable walking. We use a fast, real-time QP-based inverse kinematics algorithm that produces joint references from the task space trajectories, which makes the formulation independent of the knowledge of the robot dynamics. Finally, we implemented and evaluated the proposed approach in simulation and hardware experiments with a Digit robot obtaining stable periodic locomotion for both cases.