论文标题

V-Coder:在知识图中进行语义披露的自适应自动编码器

V-Coder: Adaptive AutoEncoder for Semantic Disclosure in Knowledge Graphs

论文作者

Frey, Christian M. M., Schubert, Matthias

论文摘要

语义网或知识图(kg)出现在需要访问结构化知识的智能系统的最重要信息源之一中。主要挑战之一是从文本数据中提取和处理明确的信息。在人类的看法之后,两个命名实体之间重叠的语义联系变得清晰明了,因为我们对关系的常识性,当我们从机器的自动驱动过程中查看它时并非如此。在这项工作中,我们对KGS范围内的关系解决问题感兴趣,即,我们正在研究网络中实体之间关系的固有语义。我们提出了一种称为V-Coder的新自适应自动编码器,以识别从不同域中连接实体的关系。这些关系可以被认为是模棱两可的,并且是分离的候选人。同样,对于自适应学习理论(ART),我们的模型通过增加竞争层中的单位而不丢弃先前观察到的模式,同时分别学习每个关系的质量,从而从KG学习新模式。 Yago和Nell对FreeBase现实世界数据集的评估表明,V-Coder不仅能够从损坏的输入数据中恢复链接,而且还表明,KG中关系的语义披露表明了改善链接预测的趋势。语义评估包含评估。

Semantic Web or Knowledge Graphs (KG) emerged to one of the most important information source for intelligent systems requiring access to structured knowledge. One of the major challenges is the extraction and processing of unambiguous information from textual data. Following the human perception, overlapping semantic linkages between two named entities become clear due to our common-sense about the context a relationship lives in which is not the case when we look at it from an automatically driven process of a machine. In this work, we are interested in the problem of Relational Resolution within the scope of KGs, i.e, we are investigating the inherent semantic of relationships between entities within a network. We propose a new adaptive AutoEncoder, called V-Coder, to identify relations inherently connecting entities from different domains. Those relations can be considered as being ambiguous and are candidates for disentanglement. Likewise to the Adaptive Learning Theory (ART), our model learns new patterns from the KG by increasing units in a competitive layer without discarding the previous observed patterns whilst learning the quality of each relation separately. The evaluation on real-world datasets of Freebase, Yago and NELL shows that the V-Coder is not only able to recover links from corrupted input data, but also shows that the semantic disclosure of relations in a KG show the tendency to improve link prediction. A semantic evaluation wraps the evaluation up.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源