论文标题
使用神经网络和短条件数据预测罕见事件
Predicting rare events using neural networks and short-trajectory data
论文作者
论文摘要
估计事件的可能性,时机和性质是建模随机动力学系统的主要目标。当事件与解决元素动力学所需的模拟和/或测量的时间尺度相比,很少见,直接观察的准确预测变得具有挑战性。在这种情况下,一种更有效的方法是将统计数据作为Feynman-KAC方程(部分微分方程)的解决方案。在这里,我们通过训练简短数据的神经网络来开发一种方法来求解Feynman-KAC方程。我们的方法基于马尔可夫近似,但否则避免了对基本模型和动态的假设。这使得它适用于处理复杂的计算模型和观察数据。我们使用低维模型来说明我们方法的优势,该模型促进了可视化,该分析促使了一种自适应抽样策略,该策略允许在直立上识别和添加数据对预测感兴趣统计的区域重要。最后,我们证明我们可以计算出75维平流层变暖模型的准确统计。该系统为我们的方法提供了严格的测试床。
Estimating the likelihood, timing, and nature of events is a major goal of modeling stochastic dynamical systems. When the event is rare in comparison with the timescales of simulation and/or measurement needed to resolve the elemental dynamics, accurate prediction from direct observations becomes challenging. In such cases a more effective approach is to cast statistics of interest as solutions to Feynman-Kac equations (partial differential equations). Here, we develop an approach to solve Feynman-Kac equations by training neural networks on short-trajectory data. Our approach is based on a Markov approximation but otherwise avoids assumptions about the underlying model and dynamics. This makes it applicable to treating complex computational models and observational data. We illustrate the advantages of our method using a low-dimensional model that facilitates visualization, and this analysis motivates an adaptive sampling strategy that allows on-the-fly identification of and addition of data to regions important for predicting the statistics of interest. Finally, we demonstrate that we can compute accurate statistics for a 75-dimensional model of sudden stratospheric warming. This system provides a stringent test bed for our method.