论文标题

任何高素质晶格的最小链路覆盖道

Minimum-Link Covering Trails for any Hypercubic Lattice

论文作者

Ripà, Marco

论文摘要

1994年,Kranakis等。发表了一个猜想,内容涉及每条直线覆盖道路的最小链接长度,用于$ k $二维网格$ p(n,k):= \ {0,1,\ dots,n-1 \} \} \} \ times \ times \ {0,1,\ {0,1,\ dots,\ dots,n-d dots,n-1 \} \} \ cdots \ cdots \ cdots \ cdots \ n $ n $ n。在本文中,我们考虑了一般的NP完整,线条问题,其中不需要边缘与轴平行,这表明Kranakis等人的原始定理1。当忽略上述约束时,不再存在。此外,对于任何大于两个$ n $的$ n $,随着$ k $接近无穷大,任何最小(非线性)多边形链的链接长度均不超过kranakis的肯定价值$ \ frac {k} {k-frac {k-1} {k-1} {k-1} \ cdot n^{k-1} {k-1}+e(k-1}+o(n^k-n^^k-k-2 $ a)对于较低的术语(例如,如果我们选择$ n = 3 $,并假设$ c <1.5 $,从足够大的$ k $开始,则不可能访问$ p(n,k)$的所有节点,并具有链接的$ \ frac {k} {k-1} {k-1} {k-1} {k-cdot n^{k-cdot n^{k-1} $ c \ c \ cdoot node。

In 1994, Kranakis et al. published a conjecture about the minimum link-length of every rectilinear covering path for the $k$-dimensional grid $P(n,k) := \{0,1, \dots, n-1\} \times \{0,1, \dots, n-1\} \times \cdots \times \{0,1, \dots, n-1\}$. In this paper, we consider the general, NP-complete, Line-Cover problem, where the edges are not required to be axis-parallel, showing that the original Theorem 1 by Kranakis et al. no longer holds when the aforementioned constraint is disregarded. Furthermore, for any $n$ greater than two, as $k$ approaches infinity, the link-length of any minimal (non-rectilinear) polygonal chain does not exceed Kranakis' conjectured value of $\frac{k}{k-1} \cdot n^{k-1}+O(n^{k-2})$ only if we introduce a multiplicative constant $c \geq 1.5$ for the lower order terms (e.g., if we select $n=3$ and assume that $c<1.5$, starting from a sufficiently large $k$, it is not possible to visit all the nodes of $P(n,k)$ with a trail of link-length $\frac{k}{k-1} \cdot n^{k-1}+c \cdot n^{k-2}$).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源