论文标题

近k {ä} hler sphere $ \ mathbb {s}^6 $中的伪晶曲线的等距变形

Isometric deformations of pseudoholomorphic curves in the nearly K{ä}hler sphere $\mathbb{S}^6$

论文作者

Tsouri, Amalia-Sofia

论文摘要

本文的目的是研究几乎k {ä} hler sphere $ \ mathbb {s}^6,在球体中的最小表面中的$ $ \ mathbb {s}^6中的刚性曲线的刚性和变形。在各种假设下,我们描述了所有非量子最小表面的模量空间$ f \ colon m \ to \ mathbb {s}^n $,它们与$ \ m athbb {s}}^s}^6中的假圆形曲线等于等线。球体的表面。

The aim of the paper is to investigate the rigidity and the deformability of pseudoholomorphic curves in the nearly K{ä}hler sphere $\mathbb{S}^6,$ among minimal surfaces in spheres. Under various assumptions we describe the moduli space of all noncongruent minimal surfaces $f\colon M\to\mathbb{S}^n$ that are isometric to a pseudoholomorphic curve in $\mathbb{S}^6.$ Moreover, we prove a Schur type theorem (see \cite[p. 36]{Chnew}) for minimal surfaces in spheres.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源