论文标题
混乱的远程相互作用系统中争夺的流体动力学理论
Hydrodynamic theory of scrambling in chaotic long-range interacting systems
论文作者
论文摘要
Fisher-Kolmogorov-Petrovsky-Piskunov(FKPP)方程在高能量密度的局部相互作用的量子混沌系统中提供了超时订购的换向器的平均场理论;在具有幂律相互作用的系统中,相应的分数FKPP方程提供了类似的平均场理论。但是,分数FKPP的描述可能会受到强大的量子波动效应的影响,因此,如果它为具有幂律相互作用的通用混沌系统提供了合适的有效描述,则尚不清楚先验。在这里,我们使用耦合的量子点模型研究了这个问题,其相互作用腐烂为$ \ frac {1} {r^α} $,其中每个点都有$ n $ n $ n $自由度。大$ n $限制对应于平均场描述,而造成OTOC的量子波动可以通过$ \ frac {1} {n} $校正来建模,这些{n} $校正由截止功能和噪声组成。在此框架内,我们表明可以选择有效理论的参数来复制我们以前以$ n = 1 $和通用有限$ n $的蝴蝶光锥量表的重现。为了重现这些量表,FKPP方程中的分数指数$μ$需要从$μ=2α-1 $的幼稚值转移到重新归一化的值$μ=2α-2 $。我们为截止模型提供了支持的分析证据,并为完整的分数FKPP方程式提供了截止和噪声的数值确认。
The Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) equation provides a mean-field theory of out-of-time-ordered commutators in locally interacting quantum chaotic systems at high energy density; in the systems with power-law interactions, the corresponding fractional-derivative FKPP equation provides an analogous mean-field theory. However, the fractional FKPP description is potentially subject to strong quantum fluctuation effects, so it is not clear a priori if it provides a suitable effective description for generic chaotic systems with power-law interactions. Here we study this problem using a model of coupled quantum dots with interactions decaying as $\frac{1}{r^α}$, where each dot hosts $N$ degrees of freedom. The large $N$ limit corresponds to the mean-field description, while quantum fluctuations contributing to the OTOC can be modeled by $\frac{1}{N}$ corrections consisting of a cutoff function and noise. Within this framework, we show that the parameters of the effective theory can be chosen to reproduce the butterfly light cone scalings that we previously found for $N=1$ and generic finite $N$. In order to reproduce these scalings, the fractional index $μ$ in the FKPP equation needs to be shifted from the naïve value of $μ= 2α- 1$ to a renormalized value $μ= 2α- 2$. We provide supporting analytic evidence for the cutoff model and numerical confirmation for the full fractional FKPP equation with cutoff and noise.