论文标题

在魔法角度的手性模型中的整合性

Integrability in the chiral model of magic angles

论文作者

Becker, Simon, Humbert, Tristan, Zworski, Maciej

论文摘要

扭曲双层石墨烯的手性模型中的魔法角是bistritzer的手性版本的参数 - 麦克唐纳德·汉密尔顿(Macdonald Hamiltonian)在Energy Zero中表现出平坦的乐队。我们计算(复杂)魔术角的力量的总和,并用它来表明魔术角是无限的。我们还提供了第一个真实魔法角度存在的新证明,还表明相应的平面频带具有最小的多重性,以最简单地选择满足所有对称性的电势。这些结果表明(尽管没有证明)手性模型的隐藏性。

Magic angles in the chiral model of twisted bilayer graphene are parameters for which the chiral version of the Bistritzer--MacDonald Hamiltonian exhibits a flat band at energy zero. We compute the sums over powers of (complex) magic angles and use that to show that the set of magic angles is infinite. We also provide a new proof of the existence of the first real magic angle, showing also that the corresponding flat band has minimal multiplicity for the simplest possible choice of potentials satisfying all symmetries. These results indicate (though do not prove) a hidden integrability of the chiral model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源