论文标题

使用现实世界数据对基于ML的表型启用可扩展的临床解释

Enabling scalable clinical interpretation of ML-based phenotypes using real world data

论文作者

Parsons, Owen, Barlow, Nathan E, Baxter, Janie, Paraschin, Karen, Derix, Andrea, Hein, Peter, Dürichen, Robert

论文摘要

大型和深度电子医疗保健记录(EHR)数据集的可用性有可能更好地了解现实世界中的患者旅行,并确定新颖的患者亚组。基于ML的EHR数据集合主要是工具驱动的,即基于可用或新开发的方法的构建。但是,这些方法,它们的输入要求以及重要的是,通常难以解释产出的产出,尤其是没有深入的数据科学或统计培训。这危害了需要采取可行且具有临床意义的解释的最后一步。这项研究研究了使用大型EHR数据集和多种临床研究的多种聚类方法进行大规模进行患者分层分析的方法。我们已经开发了几种工具来促进无监督的患者分层结果的临床评估和解释,即模式筛查,元聚类,替代建模和策展。这些工具可以在分析中的不同阶段使用。与标准分析方法相比,我们证明了凝结结果并优化分析时间的能力。在元聚类的情况下,我们证明了患者簇的数量可以从72减少到3。在另一个分层的结果中,通过使用替代模型,我们可以迅速确定如果有血液钠测量值,则对心力衰竭患者进行分层。由于这是对所有心力衰竭患者进行的常规测量,这表明数据偏差。通过使用进一步的队列和特征策展,可以删除这些患者和其他无关的特征以提高临床意义。这些例子显示了拟议方法的有效性,我们希望鼓励在该领域的进一步研究。

The availability of large and deep electronic healthcare records (EHR) datasets has the potential to enable a better understanding of real-world patient journeys, and to identify novel subgroups of patients. ML-based aggregation of EHR data is mostly tool-driven, i.e., building on available or newly developed methods. However, these methods, their input requirements, and, importantly, resulting output are frequently difficult to interpret, especially without in-depth data science or statistical training. This endangers the final step of analysis where an actionable and clinically meaningful interpretation is needed.This study investigates approaches to perform patient stratification analysis at scale using large EHR datasets and multiple clustering methods for clinical research. We have developed several tools to facilitate the clinical evaluation and interpretation of unsupervised patient stratification results, namely pattern screening, meta clustering, surrogate modeling, and curation. These tools can be used at different stages within the analysis. As compared to a standard analysis approach, we demonstrate the ability to condense results and optimize analysis time. In the case of meta clustering, we demonstrate that the number of patient clusters can be reduced from 72 to 3 in one example. In another stratification result, by using surrogate models, we could quickly identify that heart failure patients were stratified if blood sodium measurements were available. As this is a routine measurement performed for all patients with heart failure, this indicated a data bias. By using further cohort and feature curation, these patients and other irrelevant features could be removed to increase the clinical meaningfulness. These examples show the effectiveness of the proposed methods and we hope to encourage further research in this field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源