论文标题
建模Kilonova余气:热电子种群的影响以及与GRB流出的相互作用
Modeling kilonova afterglows: Effects of the thermal electron population and interaction with GRB outflows
论文作者
论文摘要
鉴于越来越多的伽马射线爆发以及潜在的Kilonovae伴随着潜在的Kilonovae,因此越来越重要地推动Kilonova余潮的建模。在这项工作中,我们研究了遵循麦克斯韦(热)和幂律(非热)分布的两个电子种群的存在如何影响Kilonova余辉光曲线。我们采用半分析余辉模型,$ \ texttt {pyblastafterglow} $。我们考虑了针对GW170817的Ab-Initio数值相对性二进制相对性二进制恒星合并模拟的Kilonova弹出曲线。我们不执行模型选择。我们发现,热电子的发射在早期占主导地位。如果星际中等密度高($ {\ simeq} 0.1 \,\ ccm $),则在光曲线中增加了早期峰值。由于喷射会以特征性的方式减速和时间索引变化,如果观察到,则可以用于重建喷射速度分布。对于GRB 170817a推断的低星介质密度,非热电子种群的发射通常主导。我们还评估了如果星际培养基被部分去除并通过横向扩展的伽玛射线爆发弹出弹出,则余辉光曲线如何变化。我们发现主要效果是早期的排放抑制$ {\ lysSim} 10^{3} \,$天,并且在最大的情况下,当Kilonova ejecta的快速尾部通过后来扩散的gama-ray burb burb sementa延伸时,它达到$ {\ sim} 40 \%$。随后的再构造,当这些射出突破并冲击形成时,非常温和($ {\ sillesim} 10 \%$),并且可能无法观察到。
Given an increasing number of gamma-ray bursts accompanied by potential kilonovae there is a growing importance to advance modelling of kilonova afterglows. In this work, we investigate how the presence of two electron populations that follow a Maxwellian (thermal) and a power-law (non-thermal) distributions affect kilonova afterglow light curves. We employ semi-analytic afterglow model, $\texttt{PyBlastAfterglow}$. We consider kilonova ejecta profiles from ab-initio numerical relativity binary neutron star merger simulations, targeted to GW170817. We do not perform model selection. We find that the emission from thermal electrons dominates at early times. If the interstellar medium density is high (${\simeq}0.1\,\ccm$) it adds an early time peak to the light curve. As ejecta decelerates the spectral and temporal indexes change in a characteristic way that, if observed, can be used to reconstruct the ejecta velocity distribution. For the low interstellar medium density, inferred for GRB 170817A, the emission from the non-thermal electron population generally dominates. We also assess how kilonova afterglow light curves change if the interstellar medium has been partially removed and pre-accelerated by laterally expanding gamma-ray burst ejecta. We find that the main effect is the emission suppression at early time ${\lesssim}10^{3}\,$days, and at its maximum it reaches ${\sim}40\%$ when the fast tail of the kilonova ejecta moves subsonically through the wake of laterally spreading gamma-ray burst ejecta. The subsequent rebrightening, when these ejecta break through and shocks form, is very mild (${\lesssim}10\%$), and may not be observable.