论文标题
多体跟踪框架 - 从刚性对象到运动学结构
A Multi-body Tracking Framework - From Rigid Objects to Kinematic Structures
论文作者
论文摘要
运动结构在现实世界中非常普遍。它们范围从简单的铰接对象到复杂的机械系统。但是,尽管它们相关,但大多数基于模型的3D跟踪方法仅考虑刚性对象。为了克服这一限制,我们提出了一个灵活的框架,该框架允许将现有的6DOF算法扩展到运动结构。我们的方法着重于采用类似牛顿的优化技术的方法,这些方法广泛用于对象跟踪中。该框架考虑了树状和封闭的运动学结构,并允许接头和约束的灵活配置。为了从单个刚体到多体系统的项目方程式,使用了Jacobians。对于封闭的运动链,开发了一种具有Lagrange乘数的新型配方。在详细的数学证明中,我们表明我们的约束配方会导致精确的运动解,并在单个迭代中收敛。基于提出的框架,我们将ICG扩展到了多体跟踪的最新刚性对象跟踪算法。为了进行评估,我们创建了一个高度现实的合成数据集,该数据集具有大量序列和各种机器人。基于此数据集,我们进行了多种实验,这些实验证明了开发框架和我们的多体跟踪器的出色性能。
Kinematic structures are very common in the real world. They range from simple articulated objects to complex mechanical systems. However, despite their relevance, most model-based 3D tracking methods only consider rigid objects. To overcome this limitation, we propose a flexible framework that allows the extension of existing 6DoF algorithms to kinematic structures. Our approach focuses on methods that employ Newton-like optimization techniques, which are widely used in object tracking. The framework considers both tree-like and closed kinematic structures and allows a flexible configuration of joints and constraints. To project equations from individual rigid bodies to a multi-body system, Jacobians are used. For closed kinematic chains, a novel formulation that features Lagrange multipliers is developed. In a detailed mathematical proof, we show that our constraint formulation leads to an exact kinematic solution and converges in a single iteration. Based on the proposed framework, we extend ICG, which is a state-of-the-art rigid object tracking algorithm, to multi-body tracking. For the evaluation, we create a highly-realistic synthetic dataset that features a large number of sequences and various robots. Based on this dataset, we conduct a wide variety of experiments that demonstrate the excellent performance of the developed framework and our multi-body tracker.