论文标题
解构自我监督的单眼重建:重要的设计决策
Deconstructing Self-Supervised Monocular Reconstruction: The Design Decisions that Matter
论文作者
论文摘要
本文提出了一个开放而全面的框架,以系统地评估对自我监管的单眼深度估计的最新贡献。这包括训练,骨干,建筑设计选择和损失功能。该领域的许多论文在建筑设计或损失配方中都有新颖性。但是,只需更新历史系统的骨干,从而相对改善25%,从而使它们的表现胜过大多数现有系统。对该领域论文的系统评估并不直接。在以前的论文中比较类似于类似的需要,这意味着评估协议中的长期错误在现场无处不在。许多论文可能不仅针对特定数据集进行了优化,而且还针对数据和评估标准的错误。为了帮助该领域的未来研究,我们发布了模块化代码库(https://github.com/jspenmar/monodepth_benchmark),允许轻松评估针对校正的数据和评估标准的替代设计决策。我们重新实施,验证和重新评估16个最先进的贡献,并引入一个新的数据集(SYNS-Patches),其中包含多种自然和城市场景中的密集室外深度图。这允许计算复杂区域(例如深度边界)的信息指标。
This paper presents an open and comprehensive framework to systematically evaluate state-of-the-art contributions to self-supervised monocular depth estimation. This includes pretraining, backbone, architectural design choices and loss functions. Many papers in this field claim novelty in either architecture design or loss formulation. However, simply updating the backbone of historical systems results in relative improvements of 25%, allowing them to outperform the majority of existing systems. A systematic evaluation of papers in this field was not straightforward. The need to compare like-with-like in previous papers means that longstanding errors in the evaluation protocol are ubiquitous in the field. It is likely that many papers were not only optimized for particular datasets, but also for errors in the data and evaluation criteria. To aid future research in this area, we release a modular codebase (https://github.com/jspenmar/monodepth_benchmark), allowing for easy evaluation of alternate design decisions against corrected data and evaluation criteria. We re-implement, validate and re-evaluate 16 state-of-the-art contributions and introduce a new dataset (SYNS-Patches) containing dense outdoor depth maps in a variety of both natural and urban scenes. This allows for the computation of informative metrics in complex regions such as depth boundaries.