论文标题

物理信息的深层超分辨率用于时空数据

Physics-informed Deep Super-resolution for Spatiotemporal Data

论文作者

Ren, Pu, Rao, Chengping, Liu, Yang, Ma, Zihan, Wang, Qi, Wang, Jian-Xun, Sun, Hao

论文摘要

在时空尺度上,复杂物理系统的高保真模拟昂贵且无法访问。最近,人们对利用深度学习来增强基于粗粒的模拟来增强科学数据的兴趣越来越大,该模拟是廉价的计算费用,并保留了令人满意的解决方案准确性。但是,现有的主要工作集中在数据驱动的方法上,这些方法依靠丰富的培训数据集且缺乏足够的身体约束。为此,我们提出了一个新颖有效的时空超级分辨率框架,通过物理知识的学习,灵感来自部分微分方程(PDES)中时间和空间衍生物之间的独立性。一般原则是利用时间插值来进行流量估计,然后引入卷积转型神经网络以学习时间精致。此外,我们采用了具有宽宽的堆积块和带有像素舍的子像素层进行空间重建,其中特征提取是在低分辨率潜在的潜在空间中进行的。此外,我们考虑在网络中严重施加边界条件以提高重建精度。结果表明,通过广泛的数值实验,与基线算法相比,该方法的卓越有效性和效率。

High-fidelity simulation of complex physical systems is exorbitantly expensive and inaccessible across spatiotemporal scales. Recently, there has been an increasing interest in leveraging deep learning to augment scientific data based on the coarse-grained simulations, which is of cheap computational expense and retains satisfactory solution accuracy. However, the major existing work focuses on data-driven approaches which rely on rich training datasets and lack sufficient physical constraints. To this end, we propose a novel and efficient spatiotemporal super-resolution framework via physics-informed learning, inspired by the independence between temporal and spatial derivatives in partial differential equations (PDEs). The general principle is to leverage the temporal interpolation for flow estimation, and then introduce convolutional-recurrent neural networks for learning temporal refinement. Furthermore, we employ the stacked residual blocks with wide activation and sub-pixel layers with pixelshuffle for spatial reconstruction, where feature extraction is conducted in a low-resolution latent space. Moreover, we consider hard imposition of boundary conditions in the network to improve reconstruction accuracy. Results demonstrate the superior effectiveness and efficiency of the proposed method compared with baseline algorithms through extensive numerical experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源